Rose Curves with Chebyshev Polynomials
Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 219-226.

Voir la notice de l'article provenant de la source Heldermann Verlag

We present a class of curves derived from a geometrical construction. We take points on two half-lines (or lines). The first point is on one of the half-lines and the second one is on the other half-line, while the next is again on the first half-line, and so on. The distance of two consecutive points is the unit. The orbits of these points when the angle of the lines goes from zero to 2π are similar to lemniscates and rose curves. For determining the parametric equation systems of the curves we use Chebyshev polynomials.
Classification : 51N20
Mots-clés : Lemniscate, rose curve, Chebyshev polynomials
@article{JGG_2015_19_2_JGG_2015_19_2_a5,
     author = {L. N�meth },
     title = {Rose {Curves} with {Chebyshev} {Polynomials}},
     journal = {Journal for geometry and graphics},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a5/}
}
TY  - JOUR
AU  - L. N�meth 
TI  - Rose Curves with Chebyshev Polynomials
JO  - Journal for geometry and graphics
PY  - 2015
SP  - 219
EP  - 226
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a5/
ID  - JGG_2015_19_2_JGG_2015_19_2_a5
ER  - 
%0 Journal Article
%A L. N�meth 
%T Rose Curves with Chebyshev Polynomials
%J Journal for geometry and graphics
%D 2015
%P 219-226
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a5/
%F JGG_2015_19_2_JGG_2015_19_2_a5
L. N�meth . Rose Curves with Chebyshev Polynomials. Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 219-226. http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a5/