Cevian Cousins of a Triangle Centroid
Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 211-218.

Voir la notice de l'article provenant de la source Heldermann Verlag

According to Seebach's theorem there exist six points inside a triangle with Cevian triangles similar to the reference triangle. Besides the centroid, other five points M, M', MA, MB, MC are generally not constructable with ruler and compass. We present an access to these five points using an additional tool: a possibility to draw a conic through five given points. We provide information on barycentric coordinates of these five points and prove that MAMBMC is a central triangle of type 2 and that points M and M' are Brocardians of each other.
Classification : 51M15, 51N20, 51M04
Mots-clés : Cevian triangle, Seebach's theorem, constructability with ruler and compass, conics, central triangle, Brocardian
@article{JGG_2015_19_2_JGG_2015_19_2_a4,
     author = {B. Hvala },
     title = {Cevian {Cousins} of a {Triangle} {Centroid}},
     journal = {Journal for geometry and graphics},
     pages = {211--218},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     url = {http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a4/}
}
TY  - JOUR
AU  - B. Hvala 
TI  - Cevian Cousins of a Triangle Centroid
JO  - Journal for geometry and graphics
PY  - 2015
SP  - 211
EP  - 218
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a4/
ID  - JGG_2015_19_2_JGG_2015_19_2_a4
ER  - 
%0 Journal Article
%A B. Hvala 
%T Cevian Cousins of a Triangle Centroid
%J Journal for geometry and graphics
%D 2015
%P 211-218
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a4/
%F JGG_2015_19_2_JGG_2015_19_2_a4
B. Hvala . Cevian Cousins of a Triangle Centroid. Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 211-218. http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a4/