A Property of Liouville Surfaces and Manifolds
Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 179-188
Cet article a éte moissonné depuis la source Heldermann Verlag
We use the definition of the energy of a curve on a surface and show that in a Liouville surface the energy integrals along the diagonals of a net rectangle (Liouville maps are conformal) are equal. This result allows a generalization to Liouville manifolds, which is stated and proved in this paper. A series of different surfaces with an induced Liouville metric are given in Euclidean spaces. One example is given in the pseudo-Euclidean (Minkowski) plane. The material presented here also relates to our previous article in this journal [Journal of Geometry and Graphics 18 (2014) 7--21].
Classification :
53A05, 53A07
Mots-clés : Energy/action of curve, Liouville metric, Liouville surface, Liouville manifold
Mots-clés : Energy/action of curve, Liouville metric, Liouville surface, Liouville manifold
@article{JGG_2015_19_2_JGG_2015_19_2_a1,
author = {C.-S. Barbat },
title = {A {Property} of {Liouville} {Surfaces} and {Manifolds}},
journal = {Journal for geometry and graphics},
pages = {179--188},
year = {2015},
volume = {19},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a1/}
}
C.-S. Barbat . A Property of Liouville Surfaces and Manifolds. Journal for geometry and graphics, Tome 19 (2015) no. 2, pp. 179-188. http://geodesic.mathdoc.fr/item/JGG_2015_19_2_JGG_2015_19_2_a1/