The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application
Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Heldermann Verlag

The reference system of central axonometry is based on the planar image of a three-dimensional cube. Szab�'s Theorem provides a criterion on when this reference system is the central projection of a cube. However, it is more likely that in a picture or photo the image of a rectangular cuboid can be found than the image of a cube. This article provides the criterion on when the central axonometry of a rectangular cuboid with given dimensions is the central projection of a rectangular cuboid.
Classification : 51N05, 94A08
Mots-clés : Central projection, central axonometry, image processing, 3D reconstruction
@article{JGG_2013_17_2_JGG_2013_17_2_a7,
     author = {J. Szab� and R. Kunkli },
     title = {The {Generalization} of {Szab�'s} {Theorem} for {Rectangular} {Cuboids} and an {Application}},
     journal = {Journal for geometry and graphics},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/}
}
TY  - JOUR
AU  - J. Szab�
AU  - R. Kunkli 
TI  - The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application
JO  - Journal for geometry and graphics
PY  - 2013
SP  - 213
EP  - 222
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/
ID  - JGG_2013_17_2_JGG_2013_17_2_a7
ER  - 
%0 Journal Article
%A J. Szab�
%A R. Kunkli 
%T The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application
%J Journal for geometry and graphics
%D 2013
%P 213-222
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/
%F JGG_2013_17_2_JGG_2013_17_2_a7
J. Szab�; R. Kunkli . The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application. Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/