The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application
Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 213-222
Cet article a éte moissonné depuis la source Heldermann Verlag
The reference system of central axonometry is based on the planar image of a three-dimensional cube. Szab�'s Theorem provides a criterion on when this reference system is the central projection of a cube. However, it is more likely that in a picture or photo the image of a rectangular cuboid can be found than the image of a cube. This article provides the criterion on when the central axonometry of a rectangular cuboid with given dimensions is the central projection of a rectangular cuboid.
Classification :
51N05, 94A08
Mots-clés : Central projection, central axonometry, image processing, 3D reconstruction
Mots-clés : Central projection, central axonometry, image processing, 3D reconstruction
@article{JGG_2013_17_2_JGG_2013_17_2_a7,
author = {J. Szab� and R. Kunkli },
title = {The {Generalization} of {Szab�'s} {Theorem} for {Rectangular} {Cuboids} and an {Application}},
journal = {Journal for geometry and graphics},
pages = {213--222},
year = {2013},
volume = {17},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/}
}
TY - JOUR AU - J. Szab� AU - R. Kunkli TI - The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application JO - Journal for geometry and graphics PY - 2013 SP - 213 EP - 222 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/ ID - JGG_2013_17_2_JGG_2013_17_2_a7 ER -
J. Szab�; R. Kunkli . The Generalization of Szab�'s Theorem for Rectangular Cuboids and an Application. Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a7/