Kiepert Conics in Regular CK-Geometries
Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 155-161.

Voir la notice de l'article provenant de la source Heldermann Verlag

This paper is a contribution to the concept of Kiepert conics in regular CK-geometries. In such geometries a triangle ABC determines a quadruple of first Kiepert conics and, consequently, a quadruple of second Kiepert conics.
Classification : 51M09, 51N30
Mots-clés : Cayley-Klein geometries, geometry of triangle, Kiepert conics, projective geometry
@article{JGG_2013_17_2_JGG_2013_17_2_a2,
     author = {S. Mick and J. Lang },
     title = {Kiepert {Conics} in {Regular} {CK-Geometries}},
     journal = {Journal for geometry and graphics},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a2/}
}
TY  - JOUR
AU  - S. Mick
AU  - J. Lang 
TI  - Kiepert Conics in Regular CK-Geometries
JO  - Journal for geometry and graphics
PY  - 2013
SP  - 155
EP  - 161
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a2/
ID  - JGG_2013_17_2_JGG_2013_17_2_a2
ER  - 
%0 Journal Article
%A S. Mick
%A J. Lang 
%T Kiepert Conics in Regular CK-Geometries
%J Journal for geometry and graphics
%D 2013
%P 155-161
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a2/
%F JGG_2013_17_2_JGG_2013_17_2_a2
S. Mick; J. Lang . Kiepert Conics in Regular CK-Geometries. Journal for geometry and graphics, Tome 17 (2013) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/JGG_2013_17_2_JGG_2013_17_2_a2/