Amicable Triangles and Perfect Circles
Journal for geometry and graphics, Tome 17 (2013) no. 1, pp. 53-67.

Voir la notice de l'article provenant de la source Heldermann Verlag

This is a contribution to triangle geometry. Two amicable triangles are inscribed in any circle which is related to a reference triangle ABC. Amicable triangles give rise to some family of circles � so-called perfect circles. In this way it is possible to generalize geometrical objects like the Soddy and Gergonne Line, the Gergonne Point, the Fletcher Point and the points of Eppstein, Griffith, Rigby and Nobbs as well. Amicable triangles and perfect circles have numerous and unusual interesting properties, and only a small part is presented in this article. Some of these results are still lacking of a rigorous mathematical proof; they only have been numerically confirmed.
Classification : 51M04
Mots-clés : Triangle geometry, amicable triangles, perfect circles, Soddy Line, Gergonne Point, Gergonne Line, Nobbs Points
@article{JGG_2013_17_1_JGG_2013_17_1_a4,
     author = {M. Sejfried },
     title = {Amicable {Triangles} and {Perfect} {Circles}},
     journal = {Journal for geometry and graphics},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a4/}
}
TY  - JOUR
AU  - M. Sejfried 
TI  - Amicable Triangles and Perfect Circles
JO  - Journal for geometry and graphics
PY  - 2013
SP  - 53
EP  - 67
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a4/
ID  - JGG_2013_17_1_JGG_2013_17_1_a4
ER  - 
%0 Journal Article
%A M. Sejfried 
%T Amicable Triangles and Perfect Circles
%J Journal for geometry and graphics
%D 2013
%P 53-67
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a4/
%F JGG_2013_17_1_JGG_2013_17_1_a4
M. Sejfried . Amicable Triangles and Perfect Circles. Journal for geometry and graphics, Tome 17 (2013) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/JGG_2013_17_1_JGG_2013_17_1_a4/