A Flexible Planar Tessellation with a Flexion Tiling a Cylinder of Revolution
Journal for geometry and graphics, Tome 16 (2012) no. 2, pp. 153-17
Cet article a éte moissonné depuis la source Heldermann Verlag
Due to A. Kokotsakis a quad mesh consisting of congruent convex quadrangles of a planar tessellation is flexible. This means, when the flat quadrangles are seen as rigid bodies and only the dihedral angles along internal edges can vary, the mesh admits incongruent realizations in 3-space, so-called flexions. It has recently be proved by the author that at each nontrivial flexion all vertices lie on a cylinder of revolution. In the generic case the complete tessellation is an example of a flexible periodic framework with the property that the symmetry group of each flexion remains isomorphic to that of the initial flat pose.
Classification :
51M20, 52C25, 53A17, 52B70
Mots-clés : Quad mesh, flexible polyhedra, periodic framework, Kokotsakis mesh, cylinder tiling, rigid origami
Mots-clés : Quad mesh, flexible polyhedra, periodic framework, Kokotsakis mesh, cylinder tiling, rigid origami
@article{JGG_2012_16_2_JGG_2012_16_2_a3,
author = {H. Stachel },
title = {A {Flexible} {Planar} {Tessellation} with a {Flexion} {Tiling} a {Cylinder} of {Revolution}},
journal = {Journal for geometry and graphics},
pages = {153--17},
year = {2012},
volume = {16},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a3/}
}
H. Stachel . A Flexible Planar Tessellation with a Flexion Tiling a Cylinder of Revolution. Journal for geometry and graphics, Tome 16 (2012) no. 2, pp. 153-17. http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a3/