Gauss-Newton Lines and Eleven Point Conics
Journal for geometry and graphics, Tome 16 (2012) no. 2, pp. 123-128.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a projective version of the Gauss-Newton line for a quadrilateral and its dual form for a quadrangle. These new lines are related to an eleven point conic.
Classification : 51M04, 51N15
Mots-clés : Triangle geometry, Gauss-Newton line, eleven point conic
@article{JGG_2012_16_2_JGG_2012_16_2_a0,
     author = {R. C. Alperin },
     title = {Gauss-Newton {Lines} and {Eleven} {Point} {Conics}},
     journal = {Journal for geometry and graphics},
     pages = {123--128},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a0/}
}
TY  - JOUR
AU  - R. C. Alperin 
TI  - Gauss-Newton Lines and Eleven Point Conics
JO  - Journal for geometry and graphics
PY  - 2012
SP  - 123
EP  - 128
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a0/
ID  - JGG_2012_16_2_JGG_2012_16_2_a0
ER  - 
%0 Journal Article
%A R. C. Alperin 
%T Gauss-Newton Lines and Eleven Point Conics
%J Journal for geometry and graphics
%D 2012
%P 123-128
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a0/
%F JGG_2012_16_2_JGG_2012_16_2_a0
R. C. Alperin . Gauss-Newton Lines and Eleven Point Conics. Journal for geometry and graphics, Tome 16 (2012) no. 2, pp. 123-128. http://geodesic.mathdoc.fr/item/JGG_2012_16_2_JGG_2012_16_2_a0/