On Kiepert Conics in the Hyperbolic Plane
Journal for geometry and graphics, Tome 16 (2012) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Heldermann Verlag
The Kiepert hyperbola and the Kiepert parabola of a triangle in the Euclidean plane are the background of this paper. Its main issue is the question whether a similar phenomenon can be found in the hyperbolic plane. The considerations are set in the disk model of hyperbolic geometry where classical projective reasoning can also be employed.
Classification :
51M09, 51N15, 51F99
Mots-clés : Elementary hyperbolic geometry, Cayley-Klein geometry, triangle geometry, Kiepert conics, hyperbolic isogonal transformation
Mots-clés : Elementary hyperbolic geometry, Cayley-Klein geometry, triangle geometry, Kiepert conics, hyperbolic isogonal transformation
@article{JGG_2012_16_1_JGG_2012_16_1_a0,
author = {S. Mick and J. Lang },
title = {On {Kiepert} {Conics} in the {Hyperbolic} {Plane}},
journal = {Journal for geometry and graphics},
pages = {1--11},
year = {2012},
volume = {16},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/}
}
S. Mick; J. Lang . On Kiepert Conics in the Hyperbolic Plane. Journal for geometry and graphics, Tome 16 (2012) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/