On Kiepert Conics in the Hyperbolic Plane
Journal for geometry and graphics, Tome 16 (2012) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Heldermann Verlag

The Kiepert hyperbola and the Kiepert parabola of a triangle in the Euclidean plane are the background of this paper. Its main issue is the question whether a similar phenomenon can be found in the hyperbolic plane. The considerations are set in the disk model of hyperbolic geometry where classical projective reasoning can also be employed.
Classification : 51M09, 51N15, 51F99
Mots-clés : Elementary hyperbolic geometry, Cayley-Klein geometry, triangle geometry, Kiepert conics, hyperbolic isogonal transformation
@article{JGG_2012_16_1_JGG_2012_16_1_a0,
     author = {S. Mick and J. Lang },
     title = {On {Kiepert} {Conics} in the {Hyperbolic} {Plane}},
     journal = {Journal for geometry and graphics},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/}
}
TY  - JOUR
AU  - S. Mick
AU  - J. Lang 
TI  - On Kiepert Conics in the Hyperbolic Plane
JO  - Journal for geometry and graphics
PY  - 2012
SP  - 1
EP  - 11
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/
ID  - JGG_2012_16_1_JGG_2012_16_1_a0
ER  - 
%0 Journal Article
%A S. Mick
%A J. Lang 
%T On Kiepert Conics in the Hyperbolic Plane
%J Journal for geometry and graphics
%D 2012
%P 1-11
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/
%F JGG_2012_16_1_JGG_2012_16_1_a0
S. Mick; J. Lang . On Kiepert Conics in the Hyperbolic Plane. Journal for geometry and graphics, Tome 16 (2012) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/JGG_2012_16_1_JGG_2012_16_1_a0/