A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization
Journal for geometry and graphics, Tome 15 (2011) no. 2, pp. 195-201.

Voir la notice de l'article provenant de la source Heldermann Verlag

Origami is the art and science of making various shapes by simply folding a sheet of paper. When origami is studied as a geometrical problem, it is often assumed that the origami is folded flat. This flat foldability is an important property when we consider applying the techniques of origami to increase the portability and storage space of industrial products. We propose a method to generate new crease patterns that are flat-foldable by using a computer with the algorithm of numerical optimization.
Classification : 52B70, 68U05
Mots-clés : Origami, crease pattern, numerical optimization, flat foldability
@article{JGG_2011_15_2_JGG_2011_15_2_a6,
     author = {J. Mitani },
     title = {A {Method} for {Designing} {Crease} {Patterns} for {Flat-Foldable} {Origami} with {Numerical} {Optimization}},
     journal = {Journal for geometry and graphics},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JGG_2011_15_2_JGG_2011_15_2_a6/}
}
TY  - JOUR
AU  - J. Mitani 
TI  - A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization
JO  - Journal for geometry and graphics
PY  - 2011
SP  - 195
EP  - 201
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2011_15_2_JGG_2011_15_2_a6/
ID  - JGG_2011_15_2_JGG_2011_15_2_a6
ER  - 
%0 Journal Article
%A J. Mitani 
%T A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization
%J Journal for geometry and graphics
%D 2011
%P 195-201
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2011_15_2_JGG_2011_15_2_a6/
%F JGG_2011_15_2_JGG_2011_15_2_a6
J. Mitani . A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization. Journal for geometry and graphics, Tome 15 (2011) no. 2, pp. 195-201. http://geodesic.mathdoc.fr/item/JGG_2011_15_2_JGG_2011_15_2_a6/