The Gergonne Conic
Journal for geometry and graphics, Tome 15 (2011) no. 1, pp. 19-28.

Voir la notice de l'article provenant de la source Heldermann Verlag

The notion of Gergonne point was generalized in several ways during the last decades. Given a triangle V1V2V3, a point I and three arbitrary directions qi, we find a distance x = IQ1 = IQ2 = IQ3 along these directions, for which the three cevians ViQi are concurrent. If I is the incenter, qi are the direction of the altitudes, and x is the radius of the incenter, the point of concurrency is the Gergonne point. For arbitrary directions qi, it is shown that each point I generally yields two solutions, and points of concurrency lie on a conic, which can be called the Gergonne conic.
Classification : 51M04, 51N35
Mots-clés : Gergonne point, conics, projectivity, pencil of conics
@article{JGG_2011_15_1_JGG_2011_15_1_a1,
     author = {S. Gorjanc and M. Hoffmann },
     title = {The {Gergonne} {Conic}},
     journal = {Journal for geometry and graphics},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a1/}
}
TY  - JOUR
AU  - S. Gorjanc
AU  - M. Hoffmann 
TI  - The Gergonne Conic
JO  - Journal for geometry and graphics
PY  - 2011
SP  - 19
EP  - 28
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a1/
ID  - JGG_2011_15_1_JGG_2011_15_1_a1
ER  - 
%0 Journal Article
%A S. Gorjanc
%A M. Hoffmann 
%T The Gergonne Conic
%J Journal for geometry and graphics
%D 2011
%P 19-28
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a1/
%F JGG_2011_15_1_JGG_2011_15_1_a1
S. Gorjanc; M. Hoffmann . The Gergonne Conic. Journal for geometry and graphics, Tome 15 (2011) no. 1, pp. 19-28. http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a1/