Algorithm for the Parameterization of Rational Curves Revisited
Journal for geometry and graphics, Tome 15 (2011) no. 1, pp. 1-18
Cet article a éte moissonné depuis la source Heldermann Verlag
A rational parameterization of an algebraic curve yields a rational correspondence between this curve and the affine or projective line. One of the parameterization methods is based on finding all singular points and d-3 simple points of an implicitly given curve of degree d. In this paper, we study some modifications of this well-known algorithm, which are then verified on several examples.
Classification :
51N35, 14H45, 68U05
Mots-clés : Algebraic curve, singular points, genus, rational parameterization, quadratic transformation
Mots-clés : Algebraic curve, singular points, genus, rational parameterization, quadratic transformation
@article{JGG_2011_15_1_JGG_2011_15_1_a0,
author = {M. Bizzarri and M. L�vicka },
title = {Algorithm for the {Parameterization} of {Rational} {Curves} {Revisited}},
journal = {Journal for geometry and graphics},
pages = {1--18},
year = {2011},
volume = {15},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a0/}
}
TY - JOUR AU - M. Bizzarri AU - M. L�vicka TI - Algorithm for the Parameterization of Rational Curves Revisited JO - Journal for geometry and graphics PY - 2011 SP - 1 EP - 18 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a0/ ID - JGG_2011_15_1_JGG_2011_15_1_a0 ER -
M. Bizzarri; M. L�vicka . Algorithm for the Parameterization of Rational Curves Revisited. Journal for geometry and graphics, Tome 15 (2011) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/JGG_2011_15_1_JGG_2011_15_1_a0/