Surfaces of Revolution Satisfying ΔIIIx = Ax
Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 181-186
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider surfaces of revolution in the three-dimensional Euclidean space which are of coordinate finite type with respect to the third fundamental form III, i.e., their position vector x satisfies the relation ΔIIIx = Ax, where A is a square matrix of order 3. We show that a surface of revolution satisfying the preceding relation is a catenoid or part of a sphere.
Classification :
53A05, 47A75
Mots-clés : Surfaces in the Euclidean space, surfaces of coordinate finite type, Beltrami operator
Mots-clés : Surfaces in the Euclidean space, surfaces of coordinate finite type, Beltrami operator
@article{JGG_2010_14_2_JGG_2010_14_2_a4,
author = {S. Stamatakis and H. Al-Zoubi },
title = {Surfaces of {Revolution} {Satisfying} {\ensuremath{\Delta}\protect\textsuperscript{III}x} = {Ax}},
journal = {Journal for geometry and graphics},
pages = {181--186},
year = {2010},
volume = {14},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a4/}
}
S. Stamatakis; H. Al-Zoubi . Surfaces of Revolution Satisfying ΔIIIx = Ax. Journal for geometry and graphics, Tome 14 (2010) no. 2, pp. 181-186. http://geodesic.mathdoc.fr/item/JGG_2010_14_2_JGG_2010_14_2_a4/