Note on Flecnodes
Journal for geometry and graphics, Tome 13 (2009) no. 1, pp. 29-4.

Voir la notice de l'article provenant de la source Heldermann Verlag

The flecnodes Fi on a regular and non torsal ruling R0 of a ruled surface R are the points where R's asymptotic tangents along R0 hyperosculate the ruled surface. The name flecnode characterizes the intersection curve ci of the tangent plane τi with R at Fi. It has a double point (a node) at Fi and this node is an inflection point for both linear branches of ci at Fi. We show a way to parameterize the smooth one-parameter family of flecnodes of R which in general forms a curve with two branches. For that we derive the equation of the ruled quadric on three given lines in terms of Pl�cker coordinates of the given lines.
Classification : 53A05, 53A25
Mots-clés : Ruled surface, flecnode, line geometry, Lie's osculating quadric
@article{JGG_2009_13_1_JGG_2009_13_1_a3,
     author = {B. Odehnal },
     title = {Note on {Flecnodes}},
     journal = {Journal for geometry and graphics},
     pages = {29--4},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a3/}
}
TY  - JOUR
AU  - B. Odehnal 
TI  - Note on Flecnodes
JO  - Journal for geometry and graphics
PY  - 2009
SP  - 29
EP  - 4
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a3/
ID  - JGG_2009_13_1_JGG_2009_13_1_a3
ER  - 
%0 Journal Article
%A B. Odehnal 
%T Note on Flecnodes
%J Journal for geometry and graphics
%D 2009
%P 29-4
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a3/
%F JGG_2009_13_1_JGG_2009_13_1_a3
B. Odehnal . Note on Flecnodes. Journal for geometry and graphics, Tome 13 (2009) no. 1, pp. 29-4. http://geodesic.mathdoc.fr/item/JGG_2009_13_1_JGG_2009_13_1_a3/