Conic Solution of Euler's Triangle Determination Problem
Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 75-8
Cet article a éte moissonné depuis la source Heldermann Verlag
We study Euler's problem of determination of a triangle from its circumcenter, orthocenter, and incenter as a problem of geometric construction. While it cannot be solved using ruler and compass, we construct the vertices by intersecting a circle with a rectangular hyperbola, both easily constructed from the given triangle centers.
Classification :
51M04, 51M15
Mots-clés : Circumcenter, orthocenter, incenter, Feuerbach point, rectangular hyperbola
Mots-clés : Circumcenter, orthocenter, incenter, Feuerbach point, rectangular hyperbola
@article{JGG_2008_12_1_JGG_2008_12_1_a6,
author = {P. Yiu },
title = {Conic {Solution} of {Euler's} {Triangle} {Determination} {Problem}},
journal = {Journal for geometry and graphics},
pages = {75--8},
year = {2008},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a6/}
}
P. Yiu . Conic Solution of Euler's Triangle Determination Problem. Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 75-8. http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a6/