Yff Conics
Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 23-34
Cet article a éte moissonné depuis la source Heldermann Verlag
Suppose that $a,b,c$ are algebraic indeterminates and $U=u:v:w$ is a point given in homogeneous trilinear coordinates. The Yff conic of $U$ is defined as the locus of a point $X=x:y:z$ satisfying the equation $f(x,y,z) = f(u,v,w)$, where $f(u,v,w)=(vw+wu+uv)/(u^2+v^2+w^2)$. The symbolic substitution $(a,b,c) \to (bc,ca,ab)$ maps the Yff conic of the symmedian point to that of the centroid. This mapping and others are used to find a large number of special points on many Yff conics.
Classification :
51M05
Mots-clés : Ellipse, hyperbola, parabola, symbolic substitution, triangle center, trilinear coordinates, trilinear product, Yff conic
Mots-clés : Ellipse, hyperbola, parabola, symbolic substitution, triangle center, trilinear coordinates, trilinear product, Yff conic
@article{JGG_2008_12_1_JGG_2008_12_1_a2,
author = {C. Kimberling },
title = {Yff {Conics}},
journal = {Journal for geometry and graphics},
pages = {23--34},
year = {2008},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a2/}
}
C. Kimberling . Yff Conics. Journal for geometry and graphics, Tome 12 (2008) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/JGG_2008_12_1_JGG_2008_12_1_a2/