Algebraic Approach to a Geometric Characterization of Parametric Cubics
Journal for geometry and graphics, Tome 11 (2007) no. 2, pp. 173-178
Cet article a éte moissonné depuis la source Heldermann Verlag
We reprove the result of Stone and DeRose, which gives the geometric classification of the affine type of an untrimmed B�zier curve, using classical algebraic geometry. We show how to derive the characterization of Stone and DeRose from three classical results: B�zout theorem, polynomial parametrization criterion and classification of the singularity type of an algebraic curve given in Weierstrass normal form.
Classification :
68U05, 51N35
Mots-clés : Bezier curves, classification of cubics, polynomial cubics, Weierstrass normal form
Mots-clés : Bezier curves, classification of cubics, polynomial cubics, Weierstrass normal form
@article{JGG_2007_11_2_JGG_2007_11_2_a2,
author = {P. Koprowski },
title = {Algebraic {Approach} to a {Geometric} {Characterization} of {Parametric} {Cubics}},
journal = {Journal for geometry and graphics},
pages = {173--178},
year = {2007},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2007_11_2_JGG_2007_11_2_a2/}
}
P. Koprowski . Algebraic Approach to a Geometric Characterization of Parametric Cubics. Journal for geometry and graphics, Tome 11 (2007) no. 2, pp. 173-178. http://geodesic.mathdoc.fr/item/JGG_2007_11_2_JGG_2007_11_2_a2/