On Feuerbach's Theorem and a Pencil of Circles in the Isotropic Plane
Journal for geometry and graphics, Tome 10 (2006) no. 2, pp. 125-132.

Voir la notice de l'article provenant de la source Heldermann Verlag

After adapting the well-known Euler and Feuerbach theorems for the isotropic plane, the connection among the circumcircle, Euler circle, tangential circumcircle, and the polar circle of a given allowable triangle has been shown. It has been proved that all four circles belong to the same pencil of circles. There are two more interesting circles in this pencil.
Classification : 51N25
Mots-clés : Isotropic plane, triangle, Feuerbach theorem, pencil of circles
@article{JGG_2006_10_2_JGG_2006_10_2_a0,
     author = {J. Beban-Brkic and R. Kolar-Super and Z. Kolar-Begovic and V. Volenec },
     title = {On {Feuerbach's} {Theorem} and a {Pencil} of {Circles} in the {Isotropic} {Plane}},
     journal = {Journal for geometry and graphics},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JGG_2006_10_2_JGG_2006_10_2_a0/}
}
TY  - JOUR
AU  - J. Beban-Brkic
AU  - R. Kolar-Super
AU  - Z. Kolar-Begovic
AU  - V. Volenec 
TI  - On Feuerbach's Theorem and a Pencil of Circles in the Isotropic Plane
JO  - Journal for geometry and graphics
PY  - 2006
SP  - 125
EP  - 132
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2006_10_2_JGG_2006_10_2_a0/
ID  - JGG_2006_10_2_JGG_2006_10_2_a0
ER  - 
%0 Journal Article
%A J. Beban-Brkic
%A R. Kolar-Super
%A Z. Kolar-Begovic
%A V. Volenec 
%T On Feuerbach's Theorem and a Pencil of Circles in the Isotropic Plane
%J Journal for geometry and graphics
%D 2006
%P 125-132
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2006_10_2_JGG_2006_10_2_a0/
%F JGG_2006_10_2_JGG_2006_10_2_a0
J. Beban-Brkic; R. Kolar-Super; Z. Kolar-Begovic; V. Volenec . On Feuerbach's Theorem and a Pencil of Circles in the Isotropic Plane. Journal for geometry and graphics, Tome 10 (2006) no. 2, pp. 125-132. http://geodesic.mathdoc.fr/item/JGG_2006_10_2_JGG_2006_10_2_a0/