Counting Escher's m x m Ribbon Patterns
Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Heldermann Verlag

Using a construction scheme originally devised by M.C. Escher, one can generate doubly-periodic patterns of the $xy$-plane with the operations of rotation, reflection and translation acting on an asymmetric square motif. Rotating and/or reflecting the original motif yields eight distinct aspects. By selecting $m^2$ (not necessarily distinct) motif aspects and arranging them in an $m \times m$ Escher tile, one can then tile the $xy$-plane by translating the Escher tile by integer multiples of $m$ in the $x$ and/or $y$ direction to create wallpaper patterns. \\ Two wallpaper patterns are considered equivalent if there is some isometry between the two. Previously, the general formula was given by the second author [Proc. 32nd Southeastern Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge, vol. 153 (2001) 77--96] for the number of inequivalent patterns generated by $m \times m$ Escher tiles composed of the four rotated aspects of a single asymmetric motif by applying Burnside's Lemma. Here we extend that formula to include the four additional reflected aspects when composing $m \times m$ Escher tiles with which to tile the plane.
Classification : 51F15, 52C20
Mots-clés : Motif, wallpaper pattern, Escher tile, symmetry, group action, geometric structure
@article{JGG_2006_10_1_JGG_2006_10_1_a0,
     author = {J. J. Fowler and E. Gethner },
     title = {Counting {Escher's} m x m {Ribbon} {Patterns}},
     journal = {Journal for geometry and graphics},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a0/}
}
TY  - JOUR
AU  - J. J. Fowler
AU  - E. Gethner 
TI  - Counting Escher's m x m Ribbon Patterns
JO  - Journal for geometry and graphics
PY  - 2006
SP  - 1
EP  - 13
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a0/
ID  - JGG_2006_10_1_JGG_2006_10_1_a0
ER  - 
%0 Journal Article
%A J. J. Fowler
%A E. Gethner 
%T Counting Escher's m x m Ribbon Patterns
%J Journal for geometry and graphics
%D 2006
%P 1-13
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a0/
%F JGG_2006_10_1_JGG_2006_10_1_a0
J. J. Fowler; E. Gethner . Counting Escher's m x m Ribbon Patterns. Journal for geometry and graphics, Tome 10 (2006) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/JGG_2006_10_1_JGG_2006_10_1_a0/