Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 37-41.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show that if the incenter and the Fermat-Torricelli center of a tetrahedron coincide, then the tetrahedron is equifacial (or isosceles) in the sense that all its faces are congruent. The proof is intended to replace the incorrect proof given in a previous paper of the authors [Internat. J. Math. Ed. Sci. Tech. 32 (2001) 501--508] for the same statement.
Classification : 51M04, 51M20, 52B10
Mots-clés : Barycentric coordinates, Fermat-Torricelli center, isosceles tetrahedron, equifacial tetrahedron
@article{JGG_2005_9_1_JGG_2005_9_1_a3,
     author = {M. Hajja and P. Walker },
     title = {Equifaciality of {Tetrahedra} whose {Incenter} and {Fermat-Torricelli} {Center} {Coincide}},
     journal = {Journal for geometry and graphics},
     pages = {37--41},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/}
}
TY  - JOUR
AU  - M. Hajja
AU  - P. Walker 
TI  - Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide
JO  - Journal for geometry and graphics
PY  - 2005
SP  - 37
EP  - 41
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/
ID  - JGG_2005_9_1_JGG_2005_9_1_a3
ER  - 
%0 Journal Article
%A M. Hajja
%A P. Walker 
%T Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide
%J Journal for geometry and graphics
%D 2005
%P 37-41
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/
%F JGG_2005_9_1_JGG_2005_9_1_a3
M. Hajja; P. Walker . Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 37-41. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/