Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 37-41
Cet article a éte moissonné depuis la source Heldermann Verlag
We show that if the incenter and the Fermat-Torricelli center of a tetrahedron coincide, then the tetrahedron is equifacial (or isosceles) in the sense that all its faces are congruent. The proof is intended to replace the incorrect proof given in a previous paper of the authors [Internat. J. Math. Ed. Sci. Tech. 32 (2001) 501--508] for the same statement.
Classification :
51M04, 51M20, 52B10
Mots-clés : Barycentric coordinates, Fermat-Torricelli center, isosceles tetrahedron, equifacial tetrahedron
Mots-clés : Barycentric coordinates, Fermat-Torricelli center, isosceles tetrahedron, equifacial tetrahedron
@article{JGG_2005_9_1_JGG_2005_9_1_a3,
author = {M. Hajja and P. Walker },
title = {Equifaciality of {Tetrahedra} whose {Incenter} and {Fermat-Torricelli} {Center} {Coincide}},
journal = {Journal for geometry and graphics},
pages = {37--41},
year = {2005},
volume = {9},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/}
}
TY - JOUR AU - M. Hajja AU - P. Walker TI - Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide JO - Journal for geometry and graphics PY - 2005 SP - 37 EP - 41 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/ ID - JGG_2005_9_1_JGG_2005_9_1_a3 ER -
M. Hajja; P. Walker . Equifaciality of Tetrahedra whose Incenter and Fermat-Torricelli Center Coincide. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 37-41. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a3/