The Monge Point and the 3(n+1) Point Sphere of an n-Simplex
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 31-36
Cet article a éte moissonné depuis la source Heldermann Verlag
The hyperplanes through the centroids of the (n-2)-dimensional faces of an n-simplex and perpendicular to the respectively opposite 1-dimensional edges have a point in common. As a consequence, we define an analogue of the nine-point circle for any n-simplex.
Classification :
51M04
Mots-clés : Nine-point circle, Feuerbach circle, Monge point, Euler line, 3(n+1) point sphere, n-simplex, Menelaus theorem, Manheim theorem, Stewart theorem
Mots-clés : Nine-point circle, Feuerbach circle, Monge point, Euler line, 3(n+1) point sphere, n-simplex, Menelaus theorem, Manheim theorem, Stewart theorem
@article{JGG_2005_9_1_JGG_2005_9_1_a2,
author = {M. Buba-Brzozowa },
title = {The {Monge} {Point} and the 3(n+1) {Point} {Sphere} of an {n-Simplex}},
journal = {Journal for geometry and graphics},
pages = {31--36},
year = {2005},
volume = {9},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/}
}
M. Buba-Brzozowa . The Monge Point and the 3(n+1) Point Sphere of an n-Simplex. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 31-36. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/