The Monge Point and the 3(n+1) Point Sphere of an n-Simplex
Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 31-36.

Voir la notice de l'article provenant de la source Heldermann Verlag

The hyperplanes through the centroids of the (n-2)-dimensional faces of an n-simplex and perpendicular to the respectively opposite 1-dimensional edges have a point in common. As a consequence, we define an analogue of the nine-point circle for any n-simplex.
Classification : 51M04
Mots-clés : Nine-point circle, Feuerbach circle, Monge point, Euler line, 3(n+1) point sphere, n-simplex, Menelaus theorem, Manheim theorem, Stewart theorem
@article{JGG_2005_9_1_JGG_2005_9_1_a2,
     author = {M. Buba-Brzozowa },
     title = {The {Monge} {Point} and the 3(n+1) {Point} {Sphere} of an {n-Simplex}},
     journal = {Journal for geometry and graphics},
     pages = {31--36},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/}
}
TY  - JOUR
AU  - M. Buba-Brzozowa 
TI  - The Monge Point and the 3(n+1) Point Sphere of an n-Simplex
JO  - Journal for geometry and graphics
PY  - 2005
SP  - 31
EP  - 36
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/
ID  - JGG_2005_9_1_JGG_2005_9_1_a2
ER  - 
%0 Journal Article
%A M. Buba-Brzozowa 
%T The Monge Point and the 3(n+1) Point Sphere of an n-Simplex
%J Journal for geometry and graphics
%D 2005
%P 31-36
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/
%F JGG_2005_9_1_JGG_2005_9_1_a2
M. Buba-Brzozowa . The Monge Point and the 3(n+1) Point Sphere of an n-Simplex. Journal for geometry and graphics, Tome 9 (2005) no. 1, pp. 31-36. http://geodesic.mathdoc.fr/item/JGG_2005_9_1_JGG_2005_9_1_a2/