On Wallace Loci from the Projective Point of View
Journal for geometry and graphics, Tome 8 (2004) no. 2, pp. 201-213.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $\pi_k$ be the projection of an n-dimensional projective space $\Sigma$ ($2\leq\,n\infty$) from the point $B_k$ onto the hyperplane $\alpha_k$, $k = 1,\,\ldots, n+1$, and assume that $\alpha_1,...,\alpha_{n+1}$ are linearly independent. By the Wallace locus of $\pi_1,...,\pi_{n+1}$ we mean the set of all points X of $\Sigma$ whose images $\pi_1(X),...,\pi_{n+1}(X)$ are linearly dependent. In a Pappian n-space each Wallace locus is either the entire space or an algebraic hypervariety whose degree is at most n+1. In a Pappian plane a triangle ${B_1,B_2,B_3}$ and a trilateral ${\alpha_1,\alpha_2,\alpha_3}$ determine the same Wallace locus as the triangle ${\alpha_2\cap\alpha_3,\alpha_3\cap\alpha_1,\alpha_1\cap\alpha_3}$ and the trilateral ${B_2\vee\,B_3,B_3\vee\,B_1,B_1\vee\,B_2}$. An analogous exchange rule for $3\leq n infty$ is not valid. For Wallace loci of a Pappian plane with collinear centers $B_1,B_2,B_3$ we exhibit a theorem wherefrom we get the Wallace theorems for all degenerate Cayley-Klein planes by specialization. Thus we get the orthogonal and oblique Euclidean Wallace lines, the orthogonal and oblique pseudo-Euclidean Wallace lines, and the isotropic Wallace lines and, by duality, the Wallace points of the dual-Euclidean plane, of the dual-pseudo-Euclidean plane, and of the isotropic plane.
Classification : 51N15, 51M05
Mots-clés : Triangle geometry, Wallace line, pedal line, Simson line, Wallace subspace
@article{JGG_2004_8_2_JGG_2004_8_2_a7,
     author = {R. Riesinger },
     title = {On {Wallace} {Loci} from the {Projective} {Point} of {View}},
     journal = {Journal for geometry and graphics},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a7/}
}
TY  - JOUR
AU  - R. Riesinger 
TI  - On Wallace Loci from the Projective Point of View
JO  - Journal for geometry and graphics
PY  - 2004
SP  - 201
EP  - 213
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a7/
ID  - JGG_2004_8_2_JGG_2004_8_2_a7
ER  - 
%0 Journal Article
%A R. Riesinger 
%T On Wallace Loci from the Projective Point of View
%J Journal for geometry and graphics
%D 2004
%P 201-213
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a7/
%F JGG_2004_8_2_JGG_2004_8_2_a7
R. Riesinger . On Wallace Loci from the Projective Point of View. Journal for geometry and graphics, Tome 8 (2004) no. 2, pp. 201-213. http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a7/