A Note on Bang's Theorem on Equifacial Tetrahedra
Journal for geometry and graphics, Tome 8 (2004) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give an analytic proof based on Pythagoras' theorem of a theorem of Bang stating that if the faces of a tetrahedron have equal areas then they are congruent. We also place Bang's theorem in the more general context that deals with the existence and uniqueness of a tetrahedron PABC having a given base ABC and having lateral faces of given areas. Our approach shows also how to construct counter-examples to Bang's statement in higher dimensions.
Classification : 51M20, 52B11
Mots-clés : Isosceles tetrahedron, equifacial tetrahedron, Bang's Theorem, regular simplex, barycentric coordinates, trilinear coordinates
@article{JGG_2004_8_2_JGG_2004_8_2_a3,
     author = {M. Hajja and F. Saidi },
     title = {A {Note} on {Bang's} {Theorem} on {Equifacial} {Tetrahedra}},
     journal = {Journal for geometry and graphics},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a3/}
}
TY  - JOUR
AU  - M. Hajja
AU  - F. Saidi 
TI  - A Note on Bang's Theorem on Equifacial Tetrahedra
JO  - Journal for geometry and graphics
PY  - 2004
SP  - 163
EP  - 169
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a3/
ID  - JGG_2004_8_2_JGG_2004_8_2_a3
ER  - 
%0 Journal Article
%A M. Hajja
%A F. Saidi 
%T A Note on Bang's Theorem on Equifacial Tetrahedra
%J Journal for geometry and graphics
%D 2004
%P 163-169
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a3/
%F JGG_2004_8_2_JGG_2004_8_2_a3
M. Hajja; F. Saidi . A Note on Bang's Theorem on Equifacial Tetrahedra. Journal for geometry and graphics, Tome 8 (2004) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/JGG_2004_8_2_JGG_2004_8_2_a3/