The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle
Journal for geometry and graphics, Tome 8 (2004) no. 1, pp. 59-68
Cet article a éte moissonné depuis la source Heldermann Verlag
Our topic is the manifold of planes that intersect four straight lines in three-dimensional euclidean space in points of a circle. The solution manifold is of class seven and contains 24 single lines, four double lines, a triple plane and four dual conics. We compute the solution manifold's equation, visualize it and discuss the special case of the four base lines being contained in a regulus.
Classification :
14N99, 51M04
Mots-clés : Circle in space, conic section in space
Mots-clés : Circle in space, conic section in space
@article{JGG_2004_8_1_JGG_2004_8_1_a5,
author = {H.-P. Schroecker },
title = {The {Manifold} of {Planes} that {Intersect} {Four} {Straight} {Lines} in {Points} of a {Circle}},
journal = {Journal for geometry and graphics},
pages = {59--68},
year = {2004},
volume = {8},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/}
}
TY - JOUR AU - H.-P. Schroecker TI - The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle JO - Journal for geometry and graphics PY - 2004 SP - 59 EP - 68 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/ ID - JGG_2004_8_1_JGG_2004_8_1_a5 ER -
H.-P. Schroecker . The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle. Journal for geometry and graphics, Tome 8 (2004) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/