The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle
Journal for geometry and graphics, Tome 8 (2004) no. 1, pp. 59-68.

Voir la notice de l'article provenant de la source Heldermann Verlag

Our topic is the manifold of planes that intersect four straight lines in three-dimensional euclidean space in points of a circle. The solution manifold is of class seven and contains 24 single lines, four double lines, a triple plane and four dual conics. We compute the solution manifold's equation, visualize it and discuss the special case of the four base lines being contained in a regulus.
Classification : 14N99, 51M04
Mots-clés : Circle in space, conic section in space
@article{JGG_2004_8_1_JGG_2004_8_1_a5,
     author = {H.-P. Schroecker },
     title = {The {Manifold} of {Planes} that {Intersect} {Four} {Straight} {Lines} in {Points} of a {Circle}},
     journal = {Journal for geometry and graphics},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/}
}
TY  - JOUR
AU  - H.-P. Schroecker 
TI  - The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle
JO  - Journal for geometry and graphics
PY  - 2004
SP  - 59
EP  - 68
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/
ID  - JGG_2004_8_1_JGG_2004_8_1_a5
ER  - 
%0 Journal Article
%A H.-P. Schroecker 
%T The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle
%J Journal for geometry and graphics
%D 2004
%P 59-68
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/
%F JGG_2004_8_1_JGG_2004_8_1_a5
H.-P. Schroecker . The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle. Journal for geometry and graphics, Tome 8 (2004) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/JGG_2004_8_1_JGG_2004_8_1_a5/