Planar Grouping for Fast Affine Transformation and Clipping
Journal for geometry and graphics, Tome 7 (2003) no. 2, pp. 221-236.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce planar grouping, a technique where planar relationship information is gathered for a set of rigid points. This information is used to accelerate affine transformations and clipping. The planar grouping technique is an optimization problem, implemented in a best-first greedy search. We present two error metrics, one simple and fast, one based on the quadric error metric (QEM) to achieve higher quality planar grouping. We also apply the quadric error metric to linear grouping.
Classification : 68U05
Mots-clés : linear grouping, planar grouping, quadratic error metric
@article{JGG_2003_7_2_JGG_2003_7_2_a8,
     author = {J. Dinerstein and M. Hoffmann and P. Egbert and K. Turner},
     title = {Planar {Grouping} for {Fast} {Affine} {Transformation} and {Clipping}},
     journal = {Journal for geometry and graphics},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JGG_2003_7_2_JGG_2003_7_2_a8/}
}
TY  - JOUR
AU  - J. Dinerstein
AU  - M. Hoffmann
AU  - P. Egbert
AU  - K. Turner
TI  - Planar Grouping for Fast Affine Transformation and Clipping
JO  - Journal for geometry and graphics
PY  - 2003
SP  - 221
EP  - 236
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2003_7_2_JGG_2003_7_2_a8/
ID  - JGG_2003_7_2_JGG_2003_7_2_a8
ER  - 
%0 Journal Article
%A J. Dinerstein
%A M. Hoffmann
%A P. Egbert
%A K. Turner
%T Planar Grouping for Fast Affine Transformation and Clipping
%J Journal for geometry and graphics
%D 2003
%P 221-236
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2003_7_2_JGG_2003_7_2_a8/
%F JGG_2003_7_2_JGG_2003_7_2_a8
J. Dinerstein; M. Hoffmann; P. Egbert; K. Turner. Planar Grouping for Fast Affine Transformation and Clipping. Journal for geometry and graphics, Tome 7 (2003) no. 2, pp. 221-236. http://geodesic.mathdoc.fr/item/JGG_2003_7_2_JGG_2003_7_2_a8/