A Voronoi Poset
Journal for geometry and graphics, Tome 7 (2003) no. 1, pp. 041-052.

Voir la notice de l'article provenant de la source Heldermann Verlag

Given a set S of n points in general position, we consider all k-th order Voronoi diagrams on S, for k = 1,...,n, simultaneously. We recall symmetry relations for the number of cells, number of vertices and number of circles of certain orders. We introduce a poset Π(S) that consists of the k-th order Voronoi cells for all k = 1,...,n, that occur for some set S. We prove that there exists a rank function on Π(S) and moreover that the number of elements of odd rank equals the number of elements of even rank of Π(S), provided that n is odd.
Classification : 52B55, 68U05
Mots-clés : k-th order Voronoi diagrams, k-sets, posets, point configurations
@article{JGG_2003_7_1_JGG_2003_7_1_a2,
     author = {R. C. Lindenbergh},
     title = {A {Voronoi} {Poset}},
     journal = {Journal for geometry and graphics},
     pages = {041--052},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     url = {http://geodesic.mathdoc.fr/item/JGG_2003_7_1_JGG_2003_7_1_a2/}
}
TY  - JOUR
AU  - R. C. Lindenbergh
TI  - A Voronoi Poset
JO  - Journal for geometry and graphics
PY  - 2003
SP  - 041
EP  - 052
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2003_7_1_JGG_2003_7_1_a2/
ID  - JGG_2003_7_1_JGG_2003_7_1_a2
ER  - 
%0 Journal Article
%A R. C. Lindenbergh
%T A Voronoi Poset
%J Journal for geometry and graphics
%D 2003
%P 041-052
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2003_7_1_JGG_2003_7_1_a2/
%F JGG_2003_7_1_JGG_2003_7_1_a2
R. C. Lindenbergh. A Voronoi Poset. Journal for geometry and graphics, Tome 7 (2003) no. 1, pp. 041-052. http://geodesic.mathdoc.fr/item/JGG_2003_7_1_JGG_2003_7_1_a2/