Periodic and Aperiodic Figures on the Plane by Higher Dimensions
Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 133-144
Cet article a éte moissonné depuis la source Heldermann Verlag
We extend de Bruijn's idea of constructing Penrose's non-periodic tilings of the plane to higher-dimensional analogons. On the base of d-dimensional space groups we can draw nice aperiodic coloured plane tilings with the aid of computers, especially interesting ones if d+1 is prime. Our proposed probabilistic method seems to produce attractive pictures, in particular.
@article{JGG_2001_5_2_a2,
author = {E. Molnar and T. Schulz and J. Szirmai},
title = {Periodic and {Aperiodic} {Figures} on the {Plane} by {Higher} {Dimensions}},
journal = {Journal for geometry and graphics},
pages = {133--144},
year = {2001},
volume = {5},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/}
}
E. Molnar; T. Schulz; J. Szirmai. Periodic and Aperiodic Figures on the Plane by Higher Dimensions. Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 133-144. http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/