Periodic and Aperiodic Figures on the Plane by Higher Dimensions
Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 133-144.

Voir la notice de l'article provenant de la source Heldermann Verlag

We extend de Bruijn's idea of constructing Penrose's non-periodic tilings of the plane to higher-dimensional analogons. On the base of d-dimensional space groups we can draw nice aperiodic coloured plane tilings with the aid of computers, especially interesting ones if d+1 is prime. Our proposed probabilistic method seems to produce attractive pictures, in particular.
@article{JGG_2001_5_2_a2,
     author = {E. Molnar and T. Schulz and J. Szirmai},
     title = {Periodic and {Aperiodic} {Figures} on the {Plane} by {Higher} {Dimensions}},
     journal = {Journal for geometry and graphics},
     pages = {133--144},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/}
}
TY  - JOUR
AU  - E. Molnar
AU  - T. Schulz
AU  - J. Szirmai
TI  - Periodic and Aperiodic Figures on the Plane by Higher Dimensions
JO  - Journal for geometry and graphics
PY  - 2001
SP  - 133
EP  - 144
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/
ID  - JGG_2001_5_2_a2
ER  - 
%0 Journal Article
%A E. Molnar
%A T. Schulz
%A J. Szirmai
%T Periodic and Aperiodic Figures on the Plane by Higher Dimensions
%J Journal for geometry and graphics
%D 2001
%P 133-144
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/
%F JGG_2001_5_2_a2
E. Molnar; T. Schulz; J. Szirmai. Periodic and Aperiodic Figures on the Plane by Higher Dimensions. Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 133-144. http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a2/