The Rigidity Rate of Positions of Stewart-Gough Platforms
Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 121-132.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a 6-legged Stewart-Gough platform. The following investigations of such platforms will always be carried out at an arbitrary given position. If the leg lengths are kept constant, the platform in general will be rigid within the Euclidean displacement group, whereas viewed within the Euclidean similarity group it will yet be movable. There exists an infinitesimal transformation of this motion. Its deviation from the Euclidean displacement group is used to define the "rigidity rate" of the platform at this position. In order to obtain some geometric invariant measurement, Lie group methods are applied. An example eventually demonstrates the efficiency of the presented method.
@article{JGG_2001_5_2_a1,
     author = {J. Lang and S. Mick and O. R�schel},
     title = {The {Rigidity} {Rate} of {Positions} of {Stewart-Gough} {Platforms}},
     journal = {Journal for geometry and graphics},
     pages = {121--132},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a1/}
}
TY  - JOUR
AU  - J. Lang
AU  - S. Mick
AU  - O. R�schel
TI  - The Rigidity Rate of Positions of Stewart-Gough Platforms
JO  - Journal for geometry and graphics
PY  - 2001
SP  - 121
EP  - 132
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a1/
ID  - JGG_2001_5_2_a1
ER  - 
%0 Journal Article
%A J. Lang
%A S. Mick
%A O. R�schel
%T The Rigidity Rate of Positions of Stewart-Gough Platforms
%J Journal for geometry and graphics
%D 2001
%P 121-132
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a1/
%F JGG_2001_5_2_a1
J. Lang; S. Mick; O. R�schel. The Rigidity Rate of Positions of Stewart-Gough Platforms. Journal for geometry and graphics, Tome 5 (2001) no. 2, pp. 121-132. http://geodesic.mathdoc.fr/item/JGG_2001_5_2_a1/