Projection from 4D to 3D
Journal for geometry and graphics, Tome 4 (2000) no. 1, pp. 055-07.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this paper is to give a survey on analytic representations of central and orthographic projections from R4 to R3 or R2. There are discussed various aspects of these projections, whereby some special relations were revealed, e.g., the fact that homogeneous coordinates or barycentric coordinates in R3 can be obtained by applying particular projections on a point with given cartesian coordinates in R4. We would also like to demonstrate that by projecting curves or 2-surfaces of R4 interesting shapes in R3 and R2 can be obtained.
@article{JGG_2000_4_1_a3,
     author = {S. Zacharias and D. Velichova},
     title = {Projection from {4D} to {3D}},
     journal = {Journal for geometry and graphics},
     pages = {055--07},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     url = {http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a3/}
}
TY  - JOUR
AU  - S. Zacharias
AU  - D. Velichova
TI  - Projection from 4D to 3D
JO  - Journal for geometry and graphics
PY  - 2000
SP  - 055
EP  - 07
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a3/
ID  - JGG_2000_4_1_a3
ER  - 
%0 Journal Article
%A S. Zacharias
%A D. Velichova
%T Projection from 4D to 3D
%J Journal for geometry and graphics
%D 2000
%P 055-07
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a3/
%F JGG_2000_4_1_a3
S. Zacharias; D. Velichova. Projection from 4D to 3D. Journal for geometry and graphics, Tome 4 (2000) no. 1, pp. 055-07. http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a3/