On Piecewise Linear Approximation of Quadratic Functions
Journal for geometry and graphics, Tome 4 (2000) no. 1, pp. 031-054
Cet article a éte moissonné depuis la source Heldermann Verlag
We study piecewise linear approximation of quadratic functions defined on Rn. Invariance properties and canonical Cayley/Klein metrics that help in understanding this problem can be handled in arbitrary dimensions. However, the problem of optimal approximants in the sense that their linear pieces are of maximal size by keeping a given error tolerance, is a difficult one. We present a detailled discussion of the case n = 2, where we can partially use results from convex geometry and discrete geometry. The case n = 3 is considerably harder, and thus just a few results can be formulated so far.
@article{JGG_2000_4_1_a2,
author = {H. Pottmann and R. Krasauskas and B. Hamann and K. Joy and W. Seibold},
title = {On {Piecewise} {Linear} {Approximation} of {Quadratic} {Functions}},
journal = {Journal for geometry and graphics},
pages = {031--054},
year = {2000},
volume = {4},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a2/}
}
TY - JOUR AU - H. Pottmann AU - R. Krasauskas AU - B. Hamann AU - K. Joy AU - W. Seibold TI - On Piecewise Linear Approximation of Quadratic Functions JO - Journal for geometry and graphics PY - 2000 SP - 031 EP - 054 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a2/ ID - JGG_2000_4_1_a2 ER -
H. Pottmann; R. Krasauskas; B. Hamann; K. Joy; W. Seibold. On Piecewise Linear Approximation of Quadratic Functions. Journal for geometry and graphics, Tome 4 (2000) no. 1, pp. 031-054. http://geodesic.mathdoc.fr/item/JGG_2000_4_1_a2/