On the Arc Length of Parametric Cubic Curves
Journal for geometry and graphics, Tome 3 (1999) no. 1, pp. 001-016.

Voir la notice de l'article provenant de la source Heldermann Verlag

We are seeking cubic parametric curves whose arc length can be expressed in a closed form. Based on the control points of a Bezier representation of parametric cubics, we provide a criterion to determine whether their arc length has a closed form or not.
@article{JGG_1999_3_1_a0,
     author = {Z. Bancsik and I. Juhasz},
     title = {On the {Arc} {Length} of {Parametric} {Cubic} {Curves}},
     journal = {Journal for geometry and graphics},
     pages = {001--016},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {http://geodesic.mathdoc.fr/item/JGG_1999_3_1_a0/}
}
TY  - JOUR
AU  - Z. Bancsik
AU  - I. Juhasz
TI  - On the Arc Length of Parametric Cubic Curves
JO  - Journal for geometry and graphics
PY  - 1999
SP  - 001
EP  - 016
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_1999_3_1_a0/
ID  - JGG_1999_3_1_a0
ER  - 
%0 Journal Article
%A Z. Bancsik
%A I. Juhasz
%T On the Arc Length of Parametric Cubic Curves
%J Journal for geometry and graphics
%D 1999
%P 001-016
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_1999_3_1_a0/
%F JGG_1999_3_1_a0
Z. Bancsik; I. Juhasz. On the Arc Length of Parametric Cubic Curves. Journal for geometry and graphics, Tome 3 (1999) no. 1, pp. 001-016. http://geodesic.mathdoc.fr/item/JGG_1999_3_1_a0/