(n,2)-Axonometries and the Contour of Hyperspheres
Journal for geometry and graphics, Tome 1 (1997) no. 2, pp. 157-168.

Voir la notice de l'article provenant de la source Heldermann Verlag

The paper deals with special axonometric mappings of an n-dimensional Euclidean space onto a plane $\pi'$. Such an (n,2)-axonometry is given by the image of a cartesian n-frame in $\pi'$ and it is especially an isocline or orthographic axonometry, if the contour of a hypershere is a circle in $\pi'$. The paper discusses conditions under which the image of the cartesian n-frame defines an orthographic axonometry. Also a recursive construction of the hypersphere-contour in case of an arbitrary given oblique axonometry is presented.
@article{JGG_1997_1_2_a5,
     author = {G. Weiss},
     title = {(n,2)-Axonometries and the {Contour} of {Hyperspheres}},
     journal = {Journal for geometry and graphics},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1997},
     url = {http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a5/}
}
TY  - JOUR
AU  - G. Weiss
TI  - (n,2)-Axonometries and the Contour of Hyperspheres
JO  - Journal for geometry and graphics
PY  - 1997
SP  - 157
EP  - 168
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a5/
ID  - JGG_1997_1_2_a5
ER  - 
%0 Journal Article
%A G. Weiss
%T (n,2)-Axonometries and the Contour of Hyperspheres
%J Journal for geometry and graphics
%D 1997
%P 157-168
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a5/
%F JGG_1997_1_2_a5
G. Weiss. (n,2)-Axonometries and the Contour of Hyperspheres. Journal for geometry and graphics, Tome 1 (1997) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a5/