On the Theorems of Central Axonometry
Journal for geometry and graphics, Tome 1 (1997) no. 2, pp. 151-156.

Voir la notice de l'article provenant de la source Heldermann Verlag

One of the important questions of central axonometry is to give a condition under which a central axonometric mapping is a central projection. The aim of this paper is to prove that the well-known Stiefel's condition can be considered as a limiting case of a recent theorem proved by Szabo, Stachel and Vogel.
@article{JGG_1997_1_2_a4,
     author = {M. Hoffmann},
     title = {On the {Theorems} of {Central} {Axonometry}},
     journal = {Journal for geometry and graphics},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1997},
     url = {http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a4/}
}
TY  - JOUR
AU  - M. Hoffmann
TI  - On the Theorems of Central Axonometry
JO  - Journal for geometry and graphics
PY  - 1997
SP  - 151
EP  - 156
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a4/
ID  - JGG_1997_1_2_a4
ER  - 
%0 Journal Article
%A M. Hoffmann
%T On the Theorems of Central Axonometry
%J Journal for geometry and graphics
%D 1997
%P 151-156
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a4/
%F JGG_1997_1_2_a4
M. Hoffmann. On the Theorems of Central Axonometry. Journal for geometry and graphics, Tome 1 (1997) no. 2, pp. 151-156. http://geodesic.mathdoc.fr/item/JGG_1997_1_2_a4/