An Operational Calculus for the Euclidean Motion Group with Applications in Robotics and Polymer Science.
The journal of Fourier analysis and applications, Tome 6 (2000) no. 1, pp. 583-606
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
harmonic analysis, motion group, unitary representations, Fourier transform, convolution equations, partial differential equation
@article{JFAA_2000__6_1_59662,
author = {G.S. Chirikjian and A.B. Kyatkin},
title = {An {Operational} {Calculus} for the {Euclidean} {Motion} {Group} with {Applications} in {Robotics} and {Polymer} {Science.}},
journal = {The journal of Fourier analysis and applications},
pages = {583--606},
year = {2000},
volume = {6},
number = {1},
zbl = {0974.22021},
url = {http://geodesic.mathdoc.fr/item/JFAA_2000__6_1_59662/}
}
TY - JOUR AU - G.S. Chirikjian AU - A.B. Kyatkin TI - An Operational Calculus for the Euclidean Motion Group with Applications in Robotics and Polymer Science. JO - The journal of Fourier analysis and applications PY - 2000 SP - 583 EP - 606 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JFAA_2000__6_1_59662/ ID - JFAA_2000__6_1_59662 ER -
%0 Journal Article %A G.S. Chirikjian %A A.B. Kyatkin %T An Operational Calculus for the Euclidean Motion Group with Applications in Robotics and Polymer Science. %J The journal of Fourier analysis and applications %D 2000 %P 583-606 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JFAA_2000__6_1_59662/ %F JFAA_2000__6_1_59662
G.S. Chirikjian; A.B. Kyatkin. An Operational Calculus for the Euclidean Motion Group with Applications in Robotics and Polymer Science.. The journal of Fourier analysis and applications, Tome 6 (2000) no. 1, pp. 583-606. http://geodesic.mathdoc.fr/item/JFAA_2000__6_1_59662/