Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{JFAA_1998__4_2_59591, author = {Peter G. Casazza}, title = {Every {Frame} is a {Sum} of {Three} {(But} {Not} {Two)} {Orthonormal} {Bases-and} {Other} {Frame} {Representations.}}, journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]}, pages = {727--732}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {1998}, zbl = {0935.46022}, url = {http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/} }
TY - JOUR AU - Peter G. Casazza TI - Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations. JO - The journal of Fourier analysis and applications [[Elektronische Ressource]] PY - 1998 SP - 727 EP - 732 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/ ID - JFAA_1998__4_2_59591 ER -
%0 Journal Article %A Peter G. Casazza %T Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations. %J The journal of Fourier analysis and applications [[Elektronische Ressource]] %D 1998 %P 727-732 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/ %F JFAA_1998__4_2_59591
Peter G. Casazza. Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.. The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 4 (1998) no. 2, pp. 727-732. http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/