Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 4 (1998) no. 2, pp. 727-732.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : frame for a Hilbert space, orthonormal bases, Riesz basis, tight frames
@article{JFAA_1998__4_2_59591,
     author = {Peter G. Casazza},
     title = {Every {Frame} is a {Sum} of {Three} {(But} {Not} {Two)} {Orthonormal} {Bases-and} {Other} {Frame} {Representations.}},
     journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]},
     pages = {727--732},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     zbl = {0935.46022},
     url = {http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/}
}
TY  - JOUR
AU  - Peter G. Casazza
TI  - Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
JO  - The journal of Fourier analysis and applications [[Elektronische Ressource]]
PY  - 1998
SP  - 727
EP  - 732
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/
ID  - JFAA_1998__4_2_59591
ER  - 
%0 Journal Article
%A Peter G. Casazza
%T Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
%J The journal of Fourier analysis and applications [[Elektronische Ressource]]
%D 1998
%P 727-732
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/
%F JFAA_1998__4_2_59591
Peter G. Casazza. Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.. The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 4 (1998) no. 2, pp. 727-732. http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/