Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
The journal of Fourier analysis and applications, Tome 4 (1998) no. 2, pp. 727-732
Cet article a éte moissonné depuis la source European Digital Mathematics Library
@article{JFAA_1998__4_2_59591,
author = {Peter G. Casazza},
title = {Every {Frame} is a {Sum} of {Three} {(But} {Not} {Two)} {Orthonormal} {Bases-and} {Other} {Frame} {Representations.}},
journal = {The journal of Fourier analysis and applications},
pages = {727--732},
year = {1998},
volume = {4},
number = {2},
zbl = {0935.46022},
url = {http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/}
}
TY - JOUR AU - Peter G. Casazza TI - Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations. JO - The journal of Fourier analysis and applications PY - 1998 SP - 727 EP - 732 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/ ID - JFAA_1998__4_2_59591 ER -
Peter G. Casazza. Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.. The journal of Fourier analysis and applications, Tome 4 (1998) no. 2, pp. 727-732. http://geodesic.mathdoc.fr/item/JFAA_1998__4_2_59591/