Integral Self-Affine Tiles in ... Part II: Lattice Tilings.
The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 3 (1997) no. 6, pp. 83-102.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : digit set, self-affine tile, lattice tiling, quasi-product form, wavelet
@article{JFAA_1997__3_6_59503,
     author = {Yang Wang and Jeffery C. Lagarias},
     title = {Integral {Self-Affine} {Tiles} in ... {Part} {II:} {Lattice} {Tilings.}},
     journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]},
     pages = {83--102},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1997},
     zbl = {0893.52015},
     url = {http://geodesic.mathdoc.fr/item/JFAA_1997__3_6_59503/}
}
TY  - JOUR
AU  - Yang Wang
AU  - Jeffery C. Lagarias
TI  - Integral Self-Affine Tiles in ... Part II: Lattice Tilings.
JO  - The journal of Fourier analysis and applications [[Elektronische Ressource]]
PY  - 1997
SP  - 83
EP  - 102
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JFAA_1997__3_6_59503/
ID  - JFAA_1997__3_6_59503
ER  - 
%0 Journal Article
%A Yang Wang
%A Jeffery C. Lagarias
%T Integral Self-Affine Tiles in ... Part II: Lattice Tilings.
%J The journal of Fourier analysis and applications [[Elektronische Ressource]]
%D 1997
%P 83-102
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JFAA_1997__3_6_59503/
%F JFAA_1997__3_6_59503
Yang Wang; Jeffery C. Lagarias. Integral Self-Affine Tiles in ... Part II: Lattice Tilings.. The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 3 (1997) no. 6, pp. 83-102. http://geodesic.mathdoc.fr/item/JFAA_1997__3_6_59503/