A Generalized Sampling Theorem with the Inverse of an Arbitrary Square Summable Sequence as Sampling Points.
The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 2 (1995) no. 2, pp. 303-314.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Kramer-type sampling theorem, Whittaker-Shannon-Kotel'nikov sampling theorem
@article{JFAA_1995__2_2_59480,
     author = {Ahmed I. Zayed},
     title = {A {Generalized} {Sampling} {Theorem} with the {Inverse} of an {Arbitrary} {Square} {Summable} {Sequence} as {Sampling} {Points.}},
     journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]},
     pages = {303--314},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1995},
     zbl = {0888.41020},
     url = {http://geodesic.mathdoc.fr/item/JFAA_1995__2_2_59480/}
}
TY  - JOUR
AU  - Ahmed I. Zayed
TI  - A Generalized Sampling Theorem with the Inverse of an Arbitrary Square Summable Sequence as Sampling Points.
JO  - The journal of Fourier analysis and applications [[Elektronische Ressource]]
PY  - 1995
SP  - 303
EP  - 314
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JFAA_1995__2_2_59480/
ID  - JFAA_1995__2_2_59480
ER  - 
%0 Journal Article
%A Ahmed I. Zayed
%T A Generalized Sampling Theorem with the Inverse of an Arbitrary Square Summable Sequence as Sampling Points.
%J The journal of Fourier analysis and applications [[Elektronische Ressource]]
%D 1995
%P 303-314
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JFAA_1995__2_2_59480/
%F JFAA_1995__2_2_59480
Ahmed I. Zayed. A Generalized Sampling Theorem with the Inverse of an Arbitrary Square Summable Sequence as Sampling Points.. The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 2 (1995) no. 2, pp. 303-314. http://geodesic.mathdoc.fr/item/JFAA_1995__2_2_59480/