Numerical simulation of blood flow in a blood vessel
Journal of computational and engineering mathematics, Tome 11 (2024) no. 4, pp. 33-39
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper proposes a finite-difference method for solving a boundary value problem for a hyperbolic equation describing the movement of blood in a blood vessel. The stability conditions of the method are given, and numerical results are presented. The method allows to track the amplitude and frequency of heartbeats in various modes, and a numerical model can be used in the study of atrial fibrillation.
Keywords:
nonlinear hyperbolic PDE, hydrodynamics of blood circulation, finite-difference method.
@article{JCEM_2024_11_4_a3,
author = {A. N. Tynda and A. A. Pivkina},
title = {Numerical simulation of blood flow in a blood vessel},
journal = {Journal of computational and engineering mathematics},
pages = {33--39},
year = {2024},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2024_11_4_a3/}
}
A. N. Tynda; A. A. Pivkina. Numerical simulation of blood flow in a blood vessel. Journal of computational and engineering mathematics, Tome 11 (2024) no. 4, pp. 33-39. http://geodesic.mathdoc.fr/item/JCEM_2024_11_4_a3/