Method of iterative extensions for analysis of a screened harmonic systems
Journal of computational and engineering mathematics, Tome 10 (2023) no. 3, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, mixed boundary value problem for screened Poisson equation is considered in a geometrically complex domain. The asymptotically optimal method of iterative extensions is described. An analysis of screened harmonic system is carried out with the method of iterative extensions. An algorithm is written that implements the method of iterative extensions in matrix form. An example of calculating the bending of a membrane on an elastic base is given.
Keywords: fictitious domain method, method of iterative extensions, screened harmonic systems, screened Poisson equation.
@article{JCEM_2023_10_3_a0,
     author = {M. P. Eremchuk and A. L. Ushakov},
     title = {Method of iterative extensions for analysis of a screened harmonic systems},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--16},
     year = {2023},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_3_a0/}
}
TY  - JOUR
AU  - M. P. Eremchuk
AU  - A. L. Ushakov
TI  - Method of iterative extensions for analysis of a screened harmonic systems
JO  - Journal of computational and engineering mathematics
PY  - 2023
SP  - 3
EP  - 16
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JCEM_2023_10_3_a0/
LA  - en
ID  - JCEM_2023_10_3_a0
ER  - 
%0 Journal Article
%A M. P. Eremchuk
%A A. L. Ushakov
%T Method of iterative extensions for analysis of a screened harmonic systems
%J Journal of computational and engineering mathematics
%D 2023
%P 3-16
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JCEM_2023_10_3_a0/
%G en
%F JCEM_2023_10_3_a0
M. P. Eremchuk; A. L. Ushakov. Method of iterative extensions for analysis of a screened harmonic systems. Journal of computational and engineering mathematics, Tome 10 (2023) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/JCEM_2023_10_3_a0/