Study of solvability of boundary value problems for one singular differential equation
Journal of computational and engineering mathematics, Tome 10 (2023) no. 2, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the abstract theory of functional-differential equations is applied to some singular second-order differential equation, which is a generalization of equations encountered in the theory of chemical reactions. The result is based on the properties of the Green's operator of the corresponding linear problem.
Keywords: functional differential equations, quasilinear boundary value problems, linear equation, singular equation, unique solvability, well-defined solvability, finite-dimensional parametrizability, Green's operator.
@article{JCEM_2023_10_2_a1,
     author = {A. V. Kungurtseva and I. A. Kolesnikov},
     title = {Study of solvability of boundary value problems for one singular differential equation},
     journal = {Journal of computational and engineering mathematics},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_2_a1/}
}
TY  - JOUR
AU  - A. V. Kungurtseva
AU  - I. A. Kolesnikov
TI  - Study of solvability of boundary value problems for one singular differential equation
JO  - Journal of computational and engineering mathematics
PY  - 2023
SP  - 17
EP  - 25
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2023_10_2_a1/
LA  - en
ID  - JCEM_2023_10_2_a1
ER  - 
%0 Journal Article
%A A. V. Kungurtseva
%A I. A. Kolesnikov
%T Study of solvability of boundary value problems for one singular differential equation
%J Journal of computational and engineering mathematics
%D 2023
%P 17-25
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2023_10_2_a1/
%G en
%F JCEM_2023_10_2_a1
A. V. Kungurtseva; I. A. Kolesnikov. Study of solvability of boundary value problems for one singular differential equation. Journal of computational and engineering mathematics, Tome 10 (2023) no. 2, pp. 17-25. http://geodesic.mathdoc.fr/item/JCEM_2023_10_2_a1/