Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition
Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the authors investigate the solvability of a non-autonomous Chen – Gurtin model with a multipoint initial-final condition in the space of stochastic $\mathbf{K}$-processes. To do this, we first consider the solvability of a multipoint initial-final problem for a non-autonomous Sobolev type equation in the case when the resolving family is a strongly continuous semiflow of operators. The Chen – Gurtin model refers to non-classical models of mathematical physics. Recall that non-classical are those models of mathematical physics whose representations in the form of equations or systems of partial differential equations do not fit within one of the classical types: elliptic, parabolic or hyperbolic. For this model, multipoint initial-final conditions, which generalizing the Cauchy and Showalter-Sidorov conditions, are considered.
Keywords: Sobolev type equations, resolving $C_0$-semiflow of operators, relatively spectral projectors, Nelson – Gliklikh derivative, space of stochastic $\mathbf{K}$-processes.
@article{JCEM_2023_10_1_a4,
     author = {M. A. Sagadeeva and S. A. Zagrebina},
     title = {Solution of stochastic non-autonomous {Chen~--} {Gurtin} model with multipoint initial-final condition},
     journal = {Journal of computational and engineering mathematics},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - S. A. Zagrebina
TI  - Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition
JO  - Journal of computational and engineering mathematics
PY  - 2023
SP  - 44
EP  - 55
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/
LA  - en
ID  - JCEM_2023_10_1_a4
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A S. A. Zagrebina
%T Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition
%J Journal of computational and engineering mathematics
%D 2023
%P 44-55
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/
%G en
%F JCEM_2023_10_1_a4
M. A. Sagadeeva; S. A. Zagrebina. Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition. Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/