Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition
Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 44-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the authors investigate the solvability of a non-autonomous Chen – Gurtin model with a multipoint initial-final condition in the space of stochastic $\mathbf{K}$-processes. To do this, we first consider the solvability of a multipoint initial-final problem for a non-autonomous Sobolev type equation in the case when the resolving family is a strongly continuous semiflow of operators. The Chen – Gurtin model refers to non-classical models of mathematical physics. Recall that non-classical are those models of mathematical physics whose representations in the form of equations or systems of partial differential equations do not fit within one of the classical types: elliptic, parabolic or hyperbolic. For this model, multipoint initial-final conditions, which generalizing the Cauchy and Showalter-Sidorov conditions, are considered.
Keywords:
Sobolev type equations, resolving $C_0$-semiflow of operators, relatively spectral projectors, Nelson – Gliklikh derivative, space of stochastic $\mathbf{K}$-processes.
@article{JCEM_2023_10_1_a4,
author = {M. A. Sagadeeva and S. A. Zagrebina},
title = {Solution of stochastic non-autonomous {Chen~--} {Gurtin} model with multipoint initial-final condition},
journal = {Journal of computational and engineering mathematics},
pages = {44--55},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/}
}
TY - JOUR AU - M. A. Sagadeeva AU - S. A. Zagrebina TI - Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition JO - Journal of computational and engineering mathematics PY - 2023 SP - 44 EP - 55 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/ LA - en ID - JCEM_2023_10_1_a4 ER -
%0 Journal Article %A M. A. Sagadeeva %A S. A. Zagrebina %T Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition %J Journal of computational and engineering mathematics %D 2023 %P 44-55 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/ %G en %F JCEM_2023_10_1_a4
M. A. Sagadeeva; S. A. Zagrebina. Solution of stochastic non-autonomous Chen~-- Gurtin model with multipoint initial-final condition. Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a4/