Models of viscous fluids generated by martingales on the groups of diffeomorphisms
Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
We study two martingales on the group of Sobolev diffeomorphisms of the flat $n$-dimensional torus, they both are described by systems of two special equations with mean derivatives. The first one describes a solution of the Burgers equation on the torus that also satisfies an analog of continuity equation. The second martingale describes a certain non-Newtonian fluid on the torus that satisfies some special analogs of the Burgers equation and the continuity equation.
Keywords:
mean derivatives, flat torus, groups of diffeomoirphisms
Mots-clés : viscous hydrodynamics.
Mots-clés : viscous hydrodynamics.
@article{JCEM_2023_10_1_a0,
author = {Yu. E. Gliklikh and D. S. Sergeeva},
title = {Models of viscous fluids generated by martingales on the groups of diffeomorphisms},
journal = {Journal of computational and engineering mathematics},
pages = {3--11},
year = {2023},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/}
}
TY - JOUR AU - Yu. E. Gliklikh AU - D. S. Sergeeva TI - Models of viscous fluids generated by martingales on the groups of diffeomorphisms JO - Journal of computational and engineering mathematics PY - 2023 SP - 3 EP - 11 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/ LA - en ID - JCEM_2023_10_1_a0 ER -
%0 Journal Article %A Yu. E. Gliklikh %A D. S. Sergeeva %T Models of viscous fluids generated by martingales on the groups of diffeomorphisms %J Journal of computational and engineering mathematics %D 2023 %P 3-11 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/ %G en %F JCEM_2023_10_1_a0
Yu. E. Gliklikh; D. S. Sergeeva. Models of viscous fluids generated by martingales on the groups of diffeomorphisms. Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/