Models of viscous fluids generated by martingales on the groups of diffeomorphisms
Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two martingales on the group of Sobolev diffeomorphisms of the flat $n$-dimensional torus, they both are described by systems of two special equations with mean derivatives. The first one describes a solution of the Burgers equation on the torus that also satisfies an analog of continuity equation. The second martingale describes a certain non-Newtonian fluid on the torus that satisfies some special analogs of the Burgers equation and the continuity equation.
Keywords: mean derivatives, flat torus, groups of diffeomoirphisms, viscous hydrodynamics.
@article{JCEM_2023_10_1_a0,
     author = {Yu. E. Gliklikh and D. S. Sergeeva},
     title = {Models of viscous fluids generated by martingales on the groups of diffeomorphisms},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - D. S. Sergeeva
TI  - Models of viscous fluids generated by martingales on the groups of diffeomorphisms
JO  - Journal of computational and engineering mathematics
PY  - 2023
SP  - 3
EP  - 11
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/
LA  - en
ID  - JCEM_2023_10_1_a0
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A D. S. Sergeeva
%T Models of viscous fluids generated by martingales on the groups of diffeomorphisms
%J Journal of computational and engineering mathematics
%D 2023
%P 3-11
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/
%G en
%F JCEM_2023_10_1_a0
Yu. E. Gliklikh; D. S. Sergeeva. Models of viscous fluids generated by martingales on the groups of diffeomorphisms. Journal of computational and engineering mathematics, Tome 10 (2023) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/JCEM_2023_10_1_a0/