Numerical solution of a linear system of Navier – Stokes equations in an axisymmetric domain
Journal of computational and engineering mathematics, Tome 6 (2019) no. 3, pp. 69-75
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of Navier – Stokes equations simulates the dynamics of a viscous incompressible fluid. The problem on the existence of solutions to the Cauchy – Dirichlet problem for this system is one of the most difficult mathematical problems of the present century. However, the question on the existence of solutions to the Cauchy – Dirichlet problem for the system of Navier – Stokes equations still remains unsolved. This article shows how to obtain eigenvalues for the system in the case of an axisymmetric domain.
Keywords:
system of Navier – Stokes equations, Galerkin method, multipoint initial-final value condition.
@article{JCEM_2019_6_3_a5,
author = {A. S. Konkina},
title = {Numerical solution of a linear system of {Navier} {\textendash} {Stokes} equations in an axisymmetric domain},
journal = {Journal of computational and engineering mathematics},
pages = {69--75},
year = {2019},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a5/}
}
TY - JOUR AU - A. S. Konkina TI - Numerical solution of a linear system of Navier – Stokes equations in an axisymmetric domain JO - Journal of computational and engineering mathematics PY - 2019 SP - 69 EP - 75 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a5/ LA - en ID - JCEM_2019_6_3_a5 ER -
A. S. Konkina. Numerical solution of a linear system of Navier – Stokes equations in an axisymmetric domain. Journal of computational and engineering mathematics, Tome 6 (2019) no. 3, pp. 69-75. http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a5/