Numerical research of the Barenblatt -- Zheltov -- Kochina model on the interval with Wentzell boundary conditions
Journal of computational and engineering mathematics, Tome 6 (2019) no. 3, pp. 14-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of numerical research, we study the Barenblatt – Zheltov – Kochina model, which describes dynamics of pressure of a filtered fluid in a fractured-porous medium with the general Wentzell boundary conditions. Based on the theoretical results associated with Galerkin method, we develop an algorithm and implement the numerical solution of the Cauchy-Wentzell problem on the interval $[0, 1]$. In particular, we examine the asymptotic approximation of the spectrum of the one-dimensional Laplace operator and present result of a computational experiment. In the paper, these problems are solved under the assumption that the initial space is a contraction of the space $L^2(0, 1)$.
Keywords: Barenblatt – Zheltov – Kochina equation, Wentzell boundary conditions, numerical research, Galerkin method.
@article{JCEM_2019_6_3_a1,
     author = {N. S. Goncharov},
     title = {Numerical research of the {Barenblatt} -- {Zheltov} -- {Kochina} model on the interval with {Wentzell} boundary conditions},
     journal = {Journal of computational and engineering mathematics},
     pages = {14--25},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a1/}
}
TY  - JOUR
AU  - N. S. Goncharov
TI  - Numerical research of the Barenblatt -- Zheltov -- Kochina model on the interval with Wentzell boundary conditions
JO  - Journal of computational and engineering mathematics
PY  - 2019
SP  - 14
EP  - 25
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a1/
LA  - en
ID  - JCEM_2019_6_3_a1
ER  - 
%0 Journal Article
%A N. S. Goncharov
%T Numerical research of the Barenblatt -- Zheltov -- Kochina model on the interval with Wentzell boundary conditions
%J Journal of computational and engineering mathematics
%D 2019
%P 14-25
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a1/
%G en
%F JCEM_2019_6_3_a1
N. S. Goncharov. Numerical research of the Barenblatt -- Zheltov -- Kochina model on the interval with Wentzell boundary conditions. Journal of computational and engineering mathematics, Tome 6 (2019) no. 3, pp. 14-25. http://geodesic.mathdoc.fr/item/JCEM_2019_6_3_a1/