Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2019_6_1_a7, author = {A. I. Sedov}, title = {The use of the inverse problem of spectral analysis to forecast time series}, journal = {Journal of computational and engineering mathematics}, pages = {74--78}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a7/} }
TY - JOUR AU - A. I. Sedov TI - The use of the inverse problem of spectral analysis to forecast time series JO - Journal of computational and engineering mathematics PY - 2019 SP - 74 EP - 78 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a7/ LA - en ID - JCEM_2019_6_1_a7 ER -
A. I. Sedov. The use of the inverse problem of spectral analysis to forecast time series. Journal of computational and engineering mathematics, Tome 6 (2019) no. 1, pp. 74-78. http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a7/
[1] “Joint Sessions of the Petrovskii Seminar on Differential Equations and Mathematical Problems of Physics and the Moscow Mathematical Society (Thirteenth session, 2–5 February 1990)”, V. V. Dubrovskiy, V. A. Sadovnichiy, “To the Substantiation of the Method of Calculating the Eigenvalues of a Discrete Operator using Regularized Traces”, pp. 137, Russian Math. Surveys, 45:4 (1990), 127–155 | DOI | MR
[2] A. I. Sedov, “O suschestvovanii i edinstvennosti resheniya obratnoi zadachi spektralnogo analiza dlya samosopryazhennogo diskretnogo operatora”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2008, no. 2, 100–103 | Zbl
[3] A. I. Sedov, “O priblizhennom reshenii obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 73–78 | Zbl
[4] A. I. Sedov, “Ob obratnoi zadache spektralnogo analiza”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 91–99 | Zbl
[5] G. A. Zakirova, E. V. Kirillov, “The Existence of Solution of the Inverse Spectral Problem for Discrete Self- Adjoint Semi-Bounded from Below Operator”, J. Comp. Eng. Math., 2:4 (2015), 95–99 | DOI | Zbl