On modelling the convecting polar ionosphere
Journal of computational and engineering mathematics, Tome 6 (2019) no. 1, pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In addition to the model of polar ionosphere in terms of ordinary differential equation with random coefficients we construct and investigate two more models: described in terms of a stochastic differential equation in Ito form and in terms of stochastic equation with current velocities (symmetric Nelson's mean derivatives). The existence of solution theorems for those equations are proved.
Keywords: models of polar ionosphere, mean derivatives, current velocities, stochastic equations in Ito form.
@article{JCEM_2019_6_1_a5,
     author = {Yu. E. Gliklikh and G. A. Vlaskov},
     title = {On modelling the convecting polar ionosphere},
     journal = {Journal of computational and engineering mathematics},
     pages = {63--67},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a5/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - G. A. Vlaskov
TI  - On modelling the convecting polar ionosphere
JO  - Journal of computational and engineering mathematics
PY  - 2019
SP  - 63
EP  - 67
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a5/
LA  - en
ID  - JCEM_2019_6_1_a5
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A G. A. Vlaskov
%T On modelling the convecting polar ionosphere
%J Journal of computational and engineering mathematics
%D 2019
%P 63-67
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a5/
%G en
%F JCEM_2019_6_1_a5
Yu. E. Gliklikh; G. A. Vlaskov. On modelling the convecting polar ionosphere. Journal of computational and engineering mathematics, Tome 6 (2019) no. 1, pp. 63-67. http://geodesic.mathdoc.fr/item/JCEM_2019_6_1_a5/

[1] M. G. Deminov, “Ionosfera Zemli: Zakonomernosti i mekhanizmy”, Elektromagnitnye i plazmennye protsessy ot nedr Solntsa do nedr Zemli, IZMIRAN, M., 2015, 295–346

[2] G. A. Vlaskov, A. M. Mozhaev, “O modelirovanii stokhasticheski konvektiruyuschei polyarnoi ionosfery”, Issledovaniya vysokoshirotnoi ionosfery, KNTs AN SSSR, Apatity, 1986, 42–45

[3] I. I. Gihman, A. V. Skorohod, The Theory of Stochastic Processes, v. 3, Springer-Verlag, New York, 1979, 396 pp. | DOI | MR | MR | Zbl

[4] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011 | DOI | MR | Zbl

[5] K. R. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988 [K. R. Parthasarathy, Introduction to Probability and Measure, Springer-Verlag, New York, 2005 ] | DOI | MR

[6] S. V. Azarina, Yu. E. Gliklikh, “On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl