The algorithms for solving vector entropy control problem, comparative analysis
Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithms for solving the vector entropy control problem for Gaussian stochastic systems are considered in the article. To solve a nonlinear optimization problem for a conditional extremum, the method of penalty functions with unconditional optimization methods of various-orders is considered. A set of problem-oriented programs has been developed that implements the proposed algorithms. A comparative analysis of the computational efficiency of the proposed algorithms is performed based on Monte Carlo statistical simulation methods and simulation modeling.
Keywords: differential entropy, Gaussian stochastic system, vector entropy control, nonlinear optimization.
@article{JCEM_2018_5_3_a6,
     author = {G. G. Gevorgyan},
     title = {The algorithms for solving vector entropy control problem, comparative analysis},
     journal = {Journal of computational and engineering mathematics},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a6/}
}
TY  - JOUR
AU  - G. G. Gevorgyan
TI  - The algorithms for solving vector entropy control problem, comparative analysis
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 75
EP  - 79
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a6/
LA  - en
ID  - JCEM_2018_5_3_a6
ER  - 
%0 Journal Article
%A G. G. Gevorgyan
%T The algorithms for solving vector entropy control problem, comparative analysis
%J Journal of computational and engineering mathematics
%D 2018
%P 75-79
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a6/
%G en
%F JCEM_2018_5_3_a6
G. G. Gevorgyan. The algorithms for solving vector entropy control problem, comparative analysis. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 75-79. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a6/

[1] C. E. Shannon, “A Mathematical Theory of Communication”, The Bell System Technical Journal, 27:3(4) (1948), 379–423(623–656) | DOI | MR | Zbl

[2] A. N. Tyrsin, Entropiinoe modelirovanie mnogomernykh stokhasticheskikh sistem, Nauchnaya kniga, Voronezh, 2016, 156 pp.

[3] A. N. Tyrsin, G. G. Gevorgyan, “Entropy management of Gaussian stochastic systems”, J. Comp. Eng. Math., 4:4 (2017), 38–52 | DOI | MR

[4] A. V. Panteleev, T. A. Letova, Metody optimizatsii v primerakh i zadachakh, Vysshaya shkola, M., 2002, 544 pp.

[5] The R Project for Statistical Computing } (accessed on 15 August 2018) {\tt https://www.r-project.org

[6] RStudio } (accessed on 15 August 2018) {\tt https://www.rstudio.com

[7] Package “dfoptim” } (accessed on 15 August 2018) {\tt https://cran.r-project.org/web/packages/dfoptim/dfoptim

[8] Package “Rcgmin” } (accessed on 15 August 2018) {\tt https://cran.r-project.org/web/packages/Rcgmin/Rcgmin