Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor
Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article analyzes analytically and numerically the model of the autocatalytic reaction with diffusion in the degenerate case on a finite connected directed graph G with the Showalter – Sidorov condition. The mathematical model of the autocatalytic reaction with diffusion is based on the system of distributed Brusselator equations. The system of degenerate equations of a distributed Brusselator whose functions satisfy the conditions of continuity and flow balance belongs to a wide class of semilinear Sobolev type equations. To investigate the existence of a solution of this system of equations, the phase space method which was developed by G. A. Sviridyuk and his students to study the solvability of Sobolev type equations will be used. We will show the simplicity of the phase space and the existence of a unique local solution of the given Showalter - Sidorov problem. The theoretical results of this article served as the basis for developing an algorithm for numerical study of the model in a Maple environment. The algorithm of numerical investigation is based on the Galerkin method, which allows us to take into account the phenomenon of degeneracy of the equation. The article gives several examples illustrating the results of the computational experiment obtained on the three-ribbed and five-ribbed graphs.
Keywords: Sobolev type equation, Brusselator, Showalter – Sidorov problem, reaction-diffusion models, local solution.
@article{JCEM_2018_5_3_a2,
     author = {O. V. Gavrilova},
     title = {Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor},
     journal = {Journal of computational and engineering mathematics},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/}
}
TY  - JOUR
AU  - O. V. Gavrilova
TI  - Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 24
EP  - 37
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/
LA  - en
ID  - JCEM_2018_5_3_a2
ER  - 
%0 Journal Article
%A O. V. Gavrilova
%T Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor
%J Journal of computational and engineering mathematics
%D 2018
%P 24-37
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/
%G en
%F JCEM_2018_5_3_a2
O. V. Gavrilova. Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/

[1] L. B. Zuev, N. V. Kartashova, V. I. Danilov, Yu. I. Chumlyakov, T. M. Poletika, “Strain Localization in a Material with Transformation-Induced Plasticity (NiTi Single Crystals)”, Technical Physics. The Russian Journal of Applied Physics, 41:11 (1996), 1189–1192

[2] S. S. Zamai, V. A. Okhonin, G. M. Rudakova, “Matematicheskoe obespechenie modelirovaniya prostranstvennykh aspektov regionalnogo razvitiya”, Khvoinye borealnoi zony, 29:5-6 (2012), 30–36

[3] Yu. E. Elkin, “Avtovolnovye protsessy”, Matematicheskaya biologiya i boinformatika, 1:1 (2006), 27–40 | DOI

[4] L. B. Zuev, “O volnovom kharaktere plasticheskogo techeniya. Makroskopicheskie avtovolny lokalizatsii deformatsii”, Fizicheskaya mezomekhanika, 9:3 (2006), 47–54 | MR

[5] V. G. Borisov, “On Parabolic Boundary Value Problems with a Small Parameter on the Derivatives with Respect to $t$”, Math. USSR-Sb., 59:2 (1988), 287–302 | DOI | MR | Zbl

[6] J. M. T. Thompson, Instabilities and Catastrophes in Sciences and Engineering, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1982 | DOI | MR | MR

[7] I. A. Plyukhina, “Fazovoe prostranstvo lineinoi modeli reaktsii i diffuzii v trubchatom reaktore”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 68–72

[8] G. A. Sviridyuk, V. V. Shemetova, “The Phase Space of a Nonclassical Model”, Russian Math. (Iz. VUZ), 49:11 (2005), 44–49 | MR

[9] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 3:1 (2010), 104–125 | Zbl

[10] G. A. Sviridyuk, V. O. Kazak, “The Phase Space of One Generalized Model by Oskolkov”, Siberian Math. J., 44:5 (2003), 877–882 | DOI | MR | Zbl

[11] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI | Zbl

[12] G. A. Sviridyuk, “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 601–614 | DOI | MR | Zbl

[13] G. A. Sviridyuk, A. F. Karamova, “On the Phase Space Fold of a Nonclassical Equation”, Differ. Equ., 41:10 (2005), 1476–1481 | DOI | MR | Zbl

[14] A. F. Gilmutdinova, “O needinstvennosti reshenii zadachi Shouoltera – Sidorova dlya odnoi modeli Plotnikova”, Vestnik SamGU. Estestvennonauchnaya seriya, 2007, no. 9, 85–90 | MR | Zbl

[15] T. A. Bokareva, G. A. Sviridyuk, “Whitney Folds in Phase Spaces of Some Semilinear Sobolev-Type Equations”, Math. Notes, 55:3 (1994), 237–242 | DOI | MR | Zbl

[16] A. A. Zamyshlyaeva, A. V. Lut, “Numerical Investigation of the Boussinesq–Love Mathematical Models on Geometrical Graphs”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 137–143 | DOI | Zbl

[17] E. A. Bogatyreva, N. A. Manakova, “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbibition”, Comput. Math. Math. Phys., 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl

[18] A. A. Bayazitova, “Zadacha Shturma – Liuvillya na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 4–10 | Zbl

[19] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, Heidelberg, 1981 | DOI | MR | Zbl

[20] S. Leng, Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967 [S. Lang, Introduction to Differentiable Manifolds, Columbia University, New York, London, 1962 ] | MR

[21] G. A. Sviridyuk, “Phase Portraits of Sobolev-Type Semilinear Equations with a Relatively Strongly Sectorial Operator”, St. Petersburg Math. J., 6:5 (1995), 1109–1126 | MR | Zbl