Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2018_5_3_a2, author = {O. V. Gavrilova}, title = {Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor}, journal = {Journal of computational and engineering mathematics}, pages = {24--37}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/} }
TY - JOUR AU - O. V. Gavrilova TI - Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor JO - Journal of computational and engineering mathematics PY - 2018 SP - 24 EP - 37 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/ LA - en ID - JCEM_2018_5_3_a2 ER -
%0 Journal Article %A O. V. Gavrilova %T Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor %J Journal of computational and engineering mathematics %D 2018 %P 24-37 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/ %G en %F JCEM_2018_5_3_a2
O. V. Gavrilova. Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor. Journal of computational and engineering mathematics, Tome 5 (2018) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/JCEM_2018_5_3_a2/
[1] L. B. Zuev, N. V. Kartashova, V. I. Danilov, Yu. I. Chumlyakov, T. M. Poletika, “Strain Localization in a Material with Transformation-Induced Plasticity (NiTi Single Crystals)”, Technical Physics. The Russian Journal of Applied Physics, 41:11 (1996), 1189–1192
[2] S. S. Zamai, V. A. Okhonin, G. M. Rudakova, “Matematicheskoe obespechenie modelirovaniya prostranstvennykh aspektov regionalnogo razvitiya”, Khvoinye borealnoi zony, 29:5-6 (2012), 30–36
[3] Yu. E. Elkin, “Avtovolnovye protsessy”, Matematicheskaya biologiya i boinformatika, 1:1 (2006), 27–40 | DOI
[4] L. B. Zuev, “O volnovom kharaktere plasticheskogo techeniya. Makroskopicheskie avtovolny lokalizatsii deformatsii”, Fizicheskaya mezomekhanika, 9:3 (2006), 47–54 | MR
[5] V. G. Borisov, “On Parabolic Boundary Value Problems with a Small Parameter on the Derivatives with Respect to $t$”, Math. USSR-Sb., 59:2 (1988), 287–302 | DOI | MR | Zbl
[6] J. M. T. Thompson, Instabilities and Catastrophes in Sciences and Engineering, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1982 | DOI | MR | MR
[7] I. A. Plyukhina, “Fazovoe prostranstvo lineinoi modeli reaktsii i diffuzii v trubchatom reaktore”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 68–72
[8] G. A. Sviridyuk, V. V. Shemetova, “The Phase Space of a Nonclassical Model”, Russian Math. (Iz. VUZ), 49:11 (2005), 44–49 | MR
[9] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 3:1 (2010), 104–125 | Zbl
[10] G. A. Sviridyuk, V. O. Kazak, “The Phase Space of One Generalized Model by Oskolkov”, Siberian Math. J., 44:5 (2003), 877–882 | DOI | MR | Zbl
[11] N. A. Manakova, G. A. Sviridyuk, “Neklassicheskie uravneniya matematicheskoi fiziki. Fazovye prostranstva polulineinykh uravnenii sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51 | DOI | Zbl
[12] G. A. Sviridyuk, “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 601–614 | DOI | MR | Zbl
[13] G. A. Sviridyuk, A. F. Karamova, “On the Phase Space Fold of a Nonclassical Equation”, Differ. Equ., 41:10 (2005), 1476–1481 | DOI | MR | Zbl
[14] A. F. Gilmutdinova, “O needinstvennosti reshenii zadachi Shouoltera – Sidorova dlya odnoi modeli Plotnikova”, Vestnik SamGU. Estestvennonauchnaya seriya, 2007, no. 9, 85–90 | MR | Zbl
[15] T. A. Bokareva, G. A. Sviridyuk, “Whitney Folds in Phase Spaces of Some Semilinear Sobolev-Type Equations”, Math. Notes, 55:3 (1994), 237–242 | DOI | MR | Zbl
[16] A. A. Zamyshlyaeva, A. V. Lut, “Numerical Investigation of the Boussinesq–Love Mathematical Models on Geometrical Graphs”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 137–143 | DOI | Zbl
[17] E. A. Bogatyreva, N. A. Manakova, “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbibition”, Comput. Math. Math. Phys., 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl
[18] A. A. Bayazitova, “Zadacha Shturma – Liuvillya na geometricheskom grafe”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 5, 4–10 | Zbl
[19] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, Heidelberg, 1981 | DOI | MR | Zbl
[20] S. Leng, Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967 [S. Lang, Introduction to Differentiable Manifolds, Columbia University, New York, London, 1962 ] | MR
[21] G. A. Sviridyuk, “Phase Portraits of Sobolev-Type Semilinear Equations with a Relatively Strongly Sectorial Operator”, St. Petersburg Math. J., 6:5 (1995), 1109–1126 | MR | Zbl