An investigation of information intelligence retrieval model in local searching systems
Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of building and learning neural networks requires considerable computational effort. Fortunately, nowadays there are many various systems with high computing power. Development of systems, algorithms, methods and their applications in machine learning has become a promising direction in science. The work is devoted to the investigation of information retrieval problems and the main problems associated with this task, constructing an overfit-safe neural network model for improving the local searching system quality on 49 % using machine learning algorithms.
Keywords: information retrieval, searching system, machine learning, neural networks, mathematical modeling, relevance increasing.
@article{JCEM_2018_5_2_a6,
     author = {T. Yu. Olenchikova and D. L. Maslennikov and A. D. Marchenko},
     title = {An investigation of information intelligence retrieval model in local searching systems},
     journal = {Journal of computational and engineering mathematics},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a6/}
}
TY  - JOUR
AU  - T. Yu. Olenchikova
AU  - D. L. Maslennikov
AU  - A. D. Marchenko
TI  - An investigation of information intelligence retrieval model in local searching systems
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 77
EP  - 82
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a6/
LA  - en
ID  - JCEM_2018_5_2_a6
ER  - 
%0 Journal Article
%A T. Yu. Olenchikova
%A D. L. Maslennikov
%A A. D. Marchenko
%T An investigation of information intelligence retrieval model in local searching systems
%J Journal of computational and engineering mathematics
%D 2018
%P 77-82
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a6/
%G en
%F JCEM_2018_5_2_a6
T. Yu. Olenchikova; D. L. Maslennikov; A. D. Marchenko. An investigation of information intelligence retrieval model in local searching systems. Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 77-82. http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a6/

[1] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press, Cambridge, 2008 | DOI | Zbl

[2] T. Rashid, Make Your Own Neural Network, CreateSpace Independent Publishing Platform, 2016

[3] T. Segaran, Programming Collective Intelligence Building Smart Web 2.0 Applications, O'Reilly Media, 2008

[4] D. J Kingma, J. L. Ba, Adam: A Method for Stochastic Optimization, arXiv: 1412.6980v9

[5] A. Krogh, J. A. Hertz, “A Simple Weight Decay Can Improve Generalization”, Proceedings of the 4th International Conference on Neural Information Processing Systems, Morgan Kaufmann, San Francisco, 1991, 950–957

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, The Journal of Machine Learning Research, 15:1 (2015), 1929–1958 | MR