Nonlinear filtering of noisy contrast images based on the generalized method of the least absolute values
Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 58-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the nonlinear smoothing filter which is based on the generalized method of least absolute value is described. Comparison with other known filters of smoothing on real images is lead. Strengths and weaknesses of the given filter are revealed. As a result of experiments it is shown that smoothing by the filter on the basis of the generalized method of the least absolute values eliminates noise on overfall more effectively.
Keywords: contrast image, contrast boundary, model, digital processing, noise reduction, generalized method of least absolute values, GMLAM.
@article{JCEM_2018_5_2_a4,
     author = {V. A. Surin and A. N. Tyrsin},
     title = {Nonlinear filtering of noisy contrast images based on the generalized method of the least absolute values},
     journal = {Journal of computational and engineering mathematics},
     pages = {58--69},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a4/}
}
TY  - JOUR
AU  - V. A. Surin
AU  - A. N. Tyrsin
TI  - Nonlinear filtering of noisy contrast images based on the generalized method of the least absolute values
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 58
EP  - 69
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a4/
LA  - en
ID  - JCEM_2018_5_2_a4
ER  - 
%0 Journal Article
%A V. A. Surin
%A A. N. Tyrsin
%T Nonlinear filtering of noisy contrast images based on the generalized method of the least absolute values
%J Journal of computational and engineering mathematics
%D 2018
%P 58-69
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a4/
%G en
%F JCEM_2018_5_2_a4
V. A. Surin; A. N. Tyrsin. Nonlinear filtering of noisy contrast images based on the generalized method of the least absolute values. Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 58-69. http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a4/

[1] L. P. Yaroslavskii, Vvedenie v tsifrovuyu obrabotku izobrazhenii, Sovetskoe radio, M., 1979, 312 pp.

[2] T. S. Huang, J.-O. Eklund, G. J. Nussbaumer, et al., Two-Dimensional Digital Signal Processing, v. 2, Transforms and Median Filters, Springer-Verlag, Berlin; Heidelberg; New York, 1981 | MR

[3] I. A. Sheremet, A. P. Rukin, V. D Lebedev, “Obrabotka izobrazhenii s pomoschyu tselochislennykh ortogonalnykh preobrazuyuschikh matrits”, Tsifrovaya obrabotka signalov, 2014, no. 4, 45–53

[4] V. K. Klochko, V. P. Kuznetsov, “Methods of Image Reconstruction and Hardware Function Evaluation Based on a Thinned Observation Matrix”, Optoelectronics, Instrumentation and Data Processing, 52:6 (2016), 537–545 | DOI | MR

[5] V. A. Volokhov, Podavlenie gaussovskogo shuma v izobrazheniyakh na osnove analiza glavnykh komponent i nelokalnoi obrabotki, Avtoreferat diss. ...kand. tekhn. nauk, Vladimirskii gos. universitet im. A.G. i N.G. Stoletovykh, Vladimir, 2012

[6] A. S. Lukin, N. V. Mamaev, D. V. Yurin, “Lokalnaya otsenka urovnya shuma na tsifrovykh izobrazheniyakh”, Trudy 16-i mezhdunarodnoi konferentsii “Tsifrovaya obrabotka signalov i ee primenenie”, v. 2, 2014, 445–449

[7] A. L. Priorov, I. V. Apalkov, S. S. Bukhtoyarov, V. V. Khryaschev, “Pereklyuchayuschiisya mediannyi filtr s blokom predvaritelnogo detektirovaniya”, Tsifrovaya obrabotka signalov, 2006, no. 4, 2–8 } (data obrascheniya: 9 iyunya 2018) {\tt http://www.dspa.ru/articles/year2006/jour06_4/art06_4_1.pdf

[8] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice Hall, New Jersey, 1992

[9] V. A. Surin, A. N. Tyrsin, “Research of Properties of Digital Noise in Contrast Images”, CEUR Workshop Proceeding, 1710 (2016), 340–348 } (accessed on June 9, 2018) {\tt http://ceur-ws.org/Vol-1710/paper34.pdf

[10] J. W. Tukey, “Discussion Emphasizing the Connection between Analysis of Variance and Spectrum Analysis”, Technometrics, 3 (1961), 191–219 | DOI | MR | Zbl

[11] E. Abreu, M. Lightstone, S. Mitra, K. Arakawa, “A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images”, IEEE Trans. on Image Processing, 5:6 (1996), 1012–1025 | DOI

[12] R. Chan, C. Ho, M. Nikolova, “Convergence of Newton's Method for a Minimization Problem in Impulse Noise Removals”, J. Comput. Math., 2 (2004), 168–177 | MR | Zbl

[13] S. Schulte, M. Nachtegael, V. De Witte, D. van der Weken, E. Kerre, “A Fuzzy Impulse Noise Detection and Reduction Method”, IEEE Trans. on Image Processing, 15:5 (2006), 1153–1162 | DOI

[14] A. N. Tyrsin, V. A. Surin, “Non-Linear Filtering of Images on the Basis of Generalized Method of Least Absolute Values”, CEUR Workshop Proceeding, 1197 (2014), 41–47

[15] A. N. Tyrsin, “Robust Construction of Regression Models Based on the Generalized Least Absolute Deviations Method”, Journal of Mathematical Sciences, 139:3 (2006), 6634–6642 | DOI | MR

[16] V. A. Surin, A. N. Tyrsin, “Model nelineinogo filtra dlya tsifrovoi obrabotki kontrastnykh izobrazhenii”, Avtometriya, 54:2 (2018), 54–62 | DOI